Author: Kyeong-Pyo Kang
Type: PhD Dissertation
Status: Completed
Year: 2006
Abstract: To improve traffic mobility and safety on highway segments plagued by work zone activities, transportation professionals in recent years have focused on exploring the potentials of using various merge and speed control strategies to regulate traffic flows. This study is focused on developing an advanced dynamic merge and variable speed limit controls for work zone applications, including an integration of both controls for best use of their strengths in maximizing throughputs and minimizing speed variance in traffic flows. With respect to the merge control, this study has developed an advanced dynamic late merge (DLM) control model and its operation algorithm, based on the optimized control thresholds that take into account the interactions between the speed, flow, and available work zone capacity. The proposed DLM control allows potential users to select the control variables and to determine their optimal thresholds in response to traffic flow dynamics. Evaluation results with extensive simulation experiments have shown that the work zone highway segment with the proposed DLM can effectively respond to time-varying traffic conditions and yield more work-zone throughputs than that under the existing DLM control based on the static control threshold, and also result in an increase in the average speed and decrease in the speed variation.
Download (umi-umd-3667-Kang.pdf)