

STATE HIGHWAY ADMINISTRATION

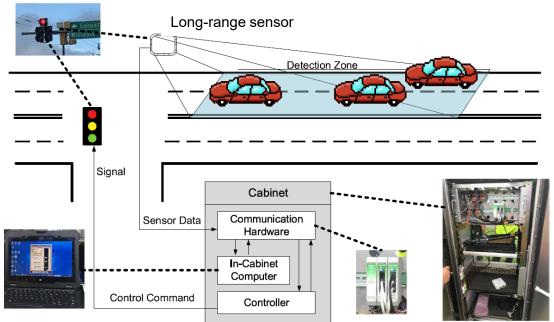
An Integrated Intelligent Intersection Control System (III-CS) for Safety Improvement

Yen-Hsiang Chen, Ph.D.

Yao Cheng, Ph.D.

University of Maryland, College Park

Sung Yoon Park, Ph.D.


Minseok Kim, P.E.

Maryland Department of Transportation State Highway Administration Office of Traffic & Safety

ADE-T meeting June 17, 2022

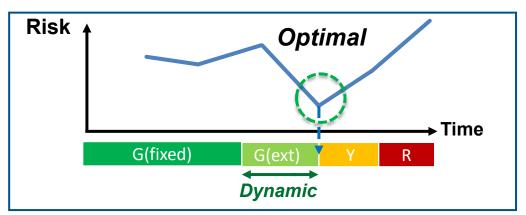
Introduction

- High-speed intersections often plagued by
 - Angle crashes & rear-end crashes
- An Integrated intelligent intersection control system (III-CS) has been developed to minimize the likelihood of having such crashes with safety-based control strategies
- Key system components:
 - Long-range sensors
 - Controller
 - In-cabinet computer
 - Communication hardware
- Control strategies
 - Dynamic all-red extension (DARE)
 - Dynamic green extension (DGE)



Control Strategies

Dynamic all-red extension (DARE)


- Preventing angle crashes by detecting red-light running (RLR) vehicles
- Has been implemented since the previous phase (Park et al., 2018)

Control Strategies (Cont'd)

- Dynamic green extension (DGE)
 - Purpose: Minimizing the probability of incurring *rear-end* crashes
 - DGE extends the green phase up to the duration of having the minimal risk of rear-end collisions.

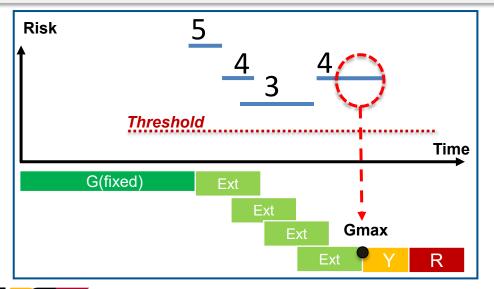
 Risks of rear-end collision: can be measured by "the estimated number of vehicles trapped in the dilemma zone"

Dilemma zone (type-II)

 the spatial distribution in which these drivers are observed to have the probability of **10%–90%** to take the **stop decision** during the yellow phase

Parsonson, P. S., R. W. Roseveare, and J. R. Thomas Jr. 1974. "Small-area detection at intersection approaches." Traffic Eng. 44 (N5): 8–17.

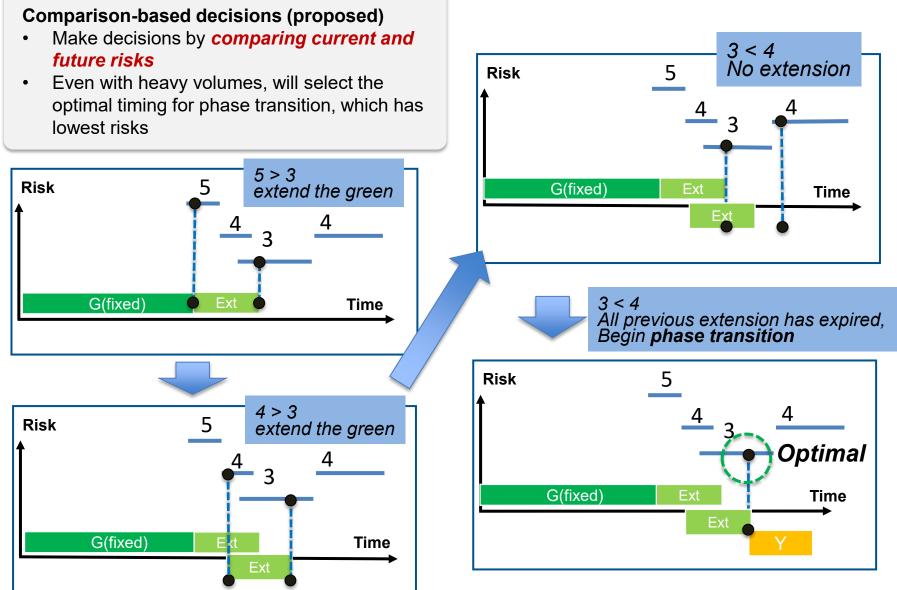
STATE HIGHWAY


Threshold and Comparison-based Logic

The key feature of the III-CS:

Comparison-based logic to making decisions by comparing current and future risks

Threshold-based decisions (conventional)


- Set a threshold to extend the green phase (e.g., 1 vehicle in DZ or 2 vehicles in DZ
- Works well in low-volume conditions
- However, will always extend to green when with high volumes (Zegeer, & Deen, 1978) or with multiple approaching lanes

Will always extend to maximum green, hence green phase termination is *irrelevant to the risk level* and may terminate at higher risks

MARYLAND DEPARTMEN OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION

Major steps of DGT

Step 1 Begin the green phase of high-speed approaches

Step 2 Retrieve the real-time data from the sensors

Step 3 Compare the current and future risks in real-time

Step 4 Determine if the window of dynamic green has begun

Step 5 Determine whether to change from green to yellow phase

Step 6 End DGT module, begin DARE module

E HIGHWAY

Major steps of DGT

Step 1 Begin the green phase of high-speed approaches

Step 2 Retrieve the real-time data from the sensors

Step 3 Compare the current and future risks in real-time

Step 4 Determine if the window of dynamic green has begun

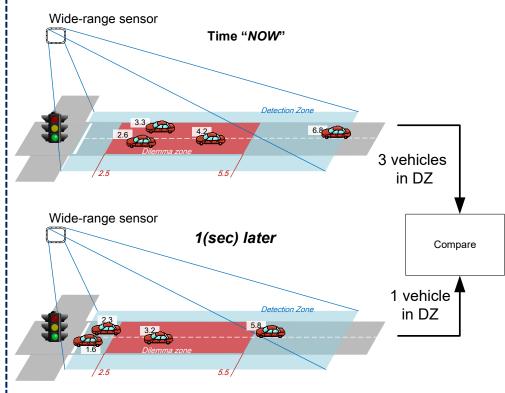
Step 5 Determine whether to change from green to yellow phase

Step 6 End DGT module, begin DARE module

- Long-range wide sensors can update the following information at the interval of every 0.13(s) and cover the range of 500 - 1000(ft):
 - time-varying speed [MPH] of each vehicle
 - time-varying position [ft] of each vehicle
 - **Time-to-stop-line** (TSSL) **[s]** of each vehicle

Major steps of DGT

Step 1 Begin the green phase of high-speed approaches

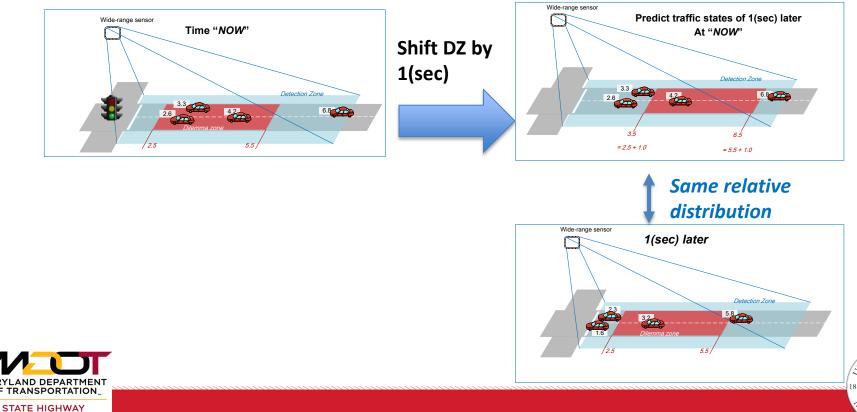

Step 2 Retrieve the real-time data from the sensors

Step 3 Compare the current and future risks in real-time

Step 4 Determine if the window of dynamic green has begun

Step 5 Determine whether to change from green to yellow phase

Step 6 End DGT module, begin DARE module



STATE HIGHWAY

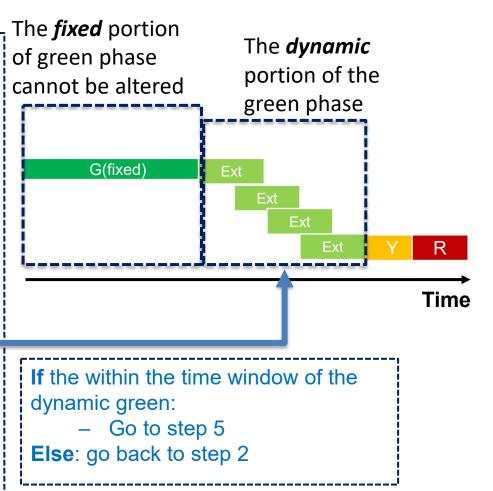
How to Predict Vehicles in DZ 1(sec) later?

- **Critical issue**: how to predict vehicles in DZ 1(sec) later?
 - In order to execute comparison-based logic

- **Proposed Method**: By shifting the dilemma zone, 1 second in terms of time-to-stop-line,
 - Because the relative distribution between vehicles and the dilemma zone will be the same

Major steps of DGT

Step 1 Begin the green phase of high-speed approaches


Step 2 Retrieve the real-time data from the sensors

Step 3 Compare the current and future risks in real-time

Step 4 Determine if the window of dynamic green has begun

Step 5 Determine whether to change from green to yellow phase

Step 6 End DGT module, begin DARE module

TE HIGHWAY

Major steps of DGT

Step 1 Begin the green phase of high-speed approaches

Step 2 Retrieve the real-time data from the sensors

Step 3 Compare the current and future risks in real-time

Step 4 Determine if the window of dynamic green has begun

Step 5 Determine whether to change from green to yellow phase

Step 6 End DGT module, begin DARE module

If current risk is lowest

- Compare with past- The green extension one second earlier has expired (current risk lower than 1 sec earlier)
- **Compare with projected future-** And no further extension has been called (current risk no higher than 1 sec later)
- Then change to yellow phase

Else If the maximum green has reached

- Then change to yellow phase
 - Maximum green:
 - gMax for isolated intersections
 - "Yield Point" in coordinated intersections

Else Repeat step 2

ATE HIGHWAY

Major steps of DGT

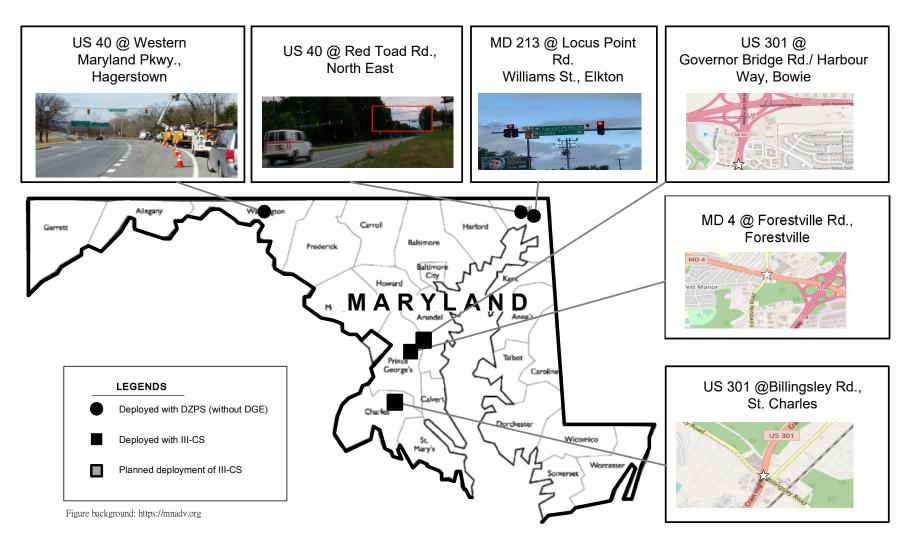
Step 1 Begin the green phase of high-speed approaches

Step 2 Retrieve the real-time data from the sensors

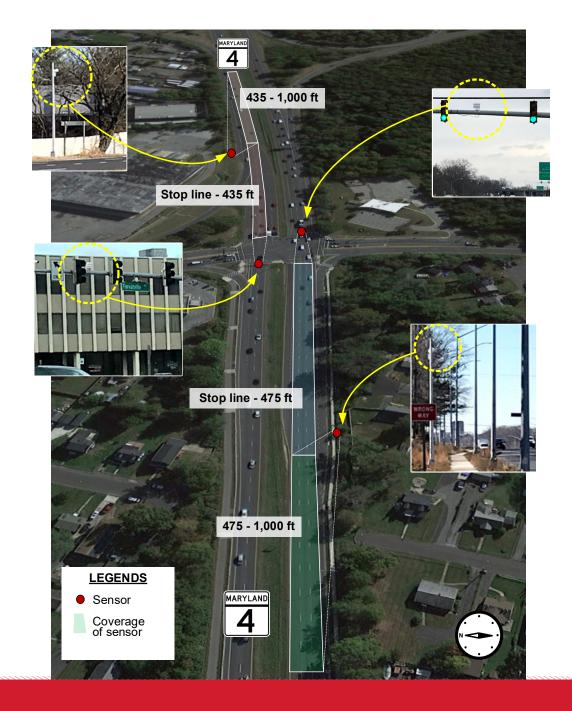
Step 3 Compare the current and future risks in real-time

Step 4 Determine if the window of dynamic green has begun

Step 5 Determine whether to change from green to yellow phase


Step 6 End DGT module, begin DARE module

E HIGHWAY



Sites

Results-DARE

RLR: Red-light runner AR: All-red interval

	Before Apri-10-2019	After Jan-28-2021	After Mar-22-2021
Red-Light Running			
No. of cycles	92	123	196
No. of RLRs	11	8	24
RLR/cycle	0.119	0.065	0.116
No. of RLRs not cleared after 2-sec default AR	2	3	7
DARE Activations			
# AR-Extension actions	N/A	12	30
# False alarm	N/A	9	23
# Missed call	N/A	0	0
Missed call rate (%)	N/A	0% (0/3)	0% (0/7)
Detection rate (%)	N/A	100% (3/3)	100% (7/7)
False alarm rate (%)	N/A	7.3% (9/123)	11.7% (23/196)

Results-DGE

Samples from the DGE's actions:

- **Optimal activation**: the decisions by the DGE indeed resulted in a **lower collision risk** over the subsequent intervals based on the traffic conditions and the number of vehicles in the dilemma zone.
- **Non-optimal activation**: the DGE's decisions did not result in a reduction in the collision risk over the subsequent intervals
- Incorrect call: the DGE failed to extend the green time

	After Jan-28-2021	After Mar-22-2021
Rate of optimal DGE activation (Number of optimal activations/ Number of activations)	66.7% (72/108)	81.3% (87/107)
Rate of non-optimal activation (Number of non-optimal activations/ Number of activations)	30.6% (33/108)	18.7% (20/107)
Incorrect call rate (Number of incorrect activations/Number of activations)	2.7% (3/108)	0.0% (0/107)

ATE HIGHWAY

Summary

- Using the hardware for the previously-developed dynamic all-red extension (DARE) for dilemma zone protection system (DZPS), III-CS further is further embodied with a dynamic green extension (DGE) to prevent rear-end collisions
- III-CS has identified potential risks.
 - Risk of angle crashes reduced by DARE
 - Risk of rear-end crashes reduced by DGE
- III-CS has proved to effectively reduce the risk of collisions during the field deployment, which can be observed from
 - High **red-light runner detection rate** of DARE (100%)
 - High optimal activation of DGE (66.7%, 81.3%)

Extensions

- Integrate pedestrian protection function to the current system
 - Delay the pedestrian phase or alert pedestrians when there is a red-light runner
- Implement the system to an arterial to further improve its effectiveness

References

- Park, S. Y., Lan, C. L., Rao, R. S., & Chang, G. L. (2018). Field evaluation of the dilemma zone protection system at suburban intersections. *Transportation research record*, *2672*(21), 51-62.
- Kronborg, P., & Davidsson, F. (1993). MOVA and LHOVRA: traffic signal control for isolated intersections. *Traffic Engineering and Control*, *34*(4), 195-200.
- Parsonson, P. S., R. W. Roseveare, and J. R. Thomas Jr. (1974).
 "Small-area detection at intersection approaches." Traffic Eng. 44 (N5): 8–17.
- Zegeer, C. V., and R. C. Deen. 1978. Green-extension systems at highspeed intersections. Research Rep. No. 503. Frankfort, KY: Dept. of Transportation, Commonwealth of Kentucky

THANK YOU!

For additional Questions, please contact Dr. Yen-Hsiang Chen <u>yenchen.ntu@gmail.com</u> Dr. Sung Yoon Park <u>Spark@mdot.Maryland.gov</u>

