Arterial-friendly Local Ramp Metering Control

ONE

CHOIA

PER

Project Progress Report 02/26/2020 ONE VEHICLE

PER

GREEN

Type-1 freeway on-ramp

Type-2 freeway on-ramp

Research issues

System structure

Methodology

Methodology

Methodology

Key control logic –providing progression for vehicles of all movements within the control area

For Type-2 ramps

Illustration of model application

Freeway mainline:

 2 lanes (excluding HOV lane), 3000 vph

Metered on-ramp:

- 792 ft, one lane
- 975 ft and 1882 ft, one lan

Volume input and turning ratios obtained from ITMS.

Arterial signals

- 90s<cycle<180s
- Lost time: 2 s, Minimum phase duration: 9 s
- Right turn on red

Study period: 1 hr

Illustration of model application

Cycle length =95s

Arterial throughput = 6537 veh/hr Freeway throughput = 3222 veh/hr Type A on-ramp queue = 587 ft(27 veh) Type B on-ramp queue = 205 ft(9 veh) On-ramp inflow = 353 veh Total restrained vehicle = 0 veh Suggested RM cycle length = 95 s

> Obj: maximize Freeway throughput + Arterial throughput - total queue vehicles

Illustration of model Application

1.3 * volume, ramp length = 972 ft

180	Cycle length (s)	160
8436	Arterial throughput (veh/hr)	8405
3083	Freeway throughput (veh/hr)	3069
13	Type A on-ramp queue (veh)	0
23	Type B on-ramp queue (veh)	20
458	On-ramp inflow (veh)	458
62	Total restrained vehicle (veh)	94
90	Suggested RM cycle length (s)	80

- When the on-ramp is shorter, intersection cycle length would decrease, and RM green ratio will increase to make sure the on-ramp queue would not spillback.
- The model would further adjust upstream green ratios to avoid gridlock in the target area, which may increase outside queueing vehicles.

2864

1.3 * volume, ramp length = 450 ft

Illustration of model Application

1.3 * volume, ramp length = 792 ft, increased turning ratio

Upgrading the system to real-time operation

How can real-time detection improve effectiveness of the proposed model?

Volume detection on the arterial

To implement adaptive network signal control, the detected arterial volume, if significantly different from historical data, should be applied to the proposed model to generate a new signal plan.

Volume detection at downstream of the on-ramp

The volume detected at the downstream can be used to calibrate the throughput estimation function in a real-time manner.

Queue detection on the on-ramp

When the detected queue is longer than the estimated Type-A queue, a larger RM green ratio is needed to avoid ramp queue spillback.

Upgrading the system to real-time operation

How can the proposed model benefit real-time operation?

Real-time operation of arterial signals

- The results from the proposed model serves as a base signal plan to minimizes the magnitude of real-time adjustment.
- The developed constraints ensuring that the vehicle queues are shorter than the link length/bay length should still be applied when adjusting signal timing in real-time operation.

Reactive ramp metering control

- Compared to real-time reactive ramp metering strategies, implementing the pre-timed ramp metering before the detection of freeway breakdown can delay or avoid the occurrence breakdown.
- The metering rate of real-time operation, although calculated based on detected data, can be kept close to the optimized value without causing on-ramp queue spillback.
- While reactive ramp metering control strategies may cause fluctuating metering rate due to varying traffic condition, the constant metering rate would minimize the impact of fluctuating on-ramp volume to freeway mainline.

Appendix: Formulations

Objective

 $\max T_{f} + k \times T_{a}$ $T_{f} = \min \left(V_{f} + V_{o}^{a}, C_{w} \right)$ $k = \frac{\sum_{i \in \Phi} V_{i} / sN_{\phi}}{\left(V_{f} + V_{o} \right) / C_{b}N_{d}}$ The ratio between arterial and freeway saturation levels

- S_o : Saturation flow rate at the on-ramp metering signal (veh/h)
- T_f : Freeway throughput (veh/h)
- T_a : Local arterial throughput (veh/h)
- k: Weighting factor

 $V_f(V_o)$: Freeway mainline(on-ramp) demand (veh/h) V_o^a : Actual flow onto the on-ramp

- Φ : Boundary intersections
- N_d : Number of lanes at the downstream of the on-ramp

Appendix: Formulations

Constraints --- on-ramp

 $l_{p} + l_{c} \leq L_{o}$ $l_{p} = \max \left(V_{o}^{a} - s_{o} r_{o}, 0 \right) \times T$ $l_{c} = V_{o}^{a} / 3600\xi$ $V_{o}^{a} = \sum_{m \in \Omega} V_{m}^{a}$

These constraints assume stable volume in the study period and can be easily updated to constraints handling piece-wise demand

On-ramp queue accumulates if inflow is higher than outflow on the on-ramp

Number of vehicles arriving at the on-ramp per cycle

Sum of the volume from the movements entering the on-ramp

- l_p : Queues caused by excessive demand (veh) V_o^a : Actual flow onto the on-ramp
- l_c : Queues caused by arrivals from upstream intersection in every cycle (veh)
- S_o : Saturation flow rate at the on-ramp metering signal (veh/h) ξ : Reciprocal of cycle length (1/C) Ω : Set of movements entering the on-ramp r_o : Metering rateg: Green ratioT: Time horizon of study (hr) S_m : Saturation flow rate for movement m (veh/h)

Link queue smaller than the bay length/link length:

 $l_{a,i} \leq L_{b,i}, l_{a,i} \leq L_{l,i}$

 $b_{m,i}$: local bandwidth of movement m $l_{a,i}$: sum of vehicles not enjoying progression from all movements m $L_{b,i}(L_{l,i})$: bay length (link length) (ft) m(m'): movements entering/leaving an intersection

Appendix: Formulations

Constraints --- arterial link

Actual outflow to an intersection is dependent on actual inflow:

 $V_{m',i}^{a} = r_{m',i}V_{m,i-1}^{a}$

Actual inflow to an intersection is dependent on actual outflow from the upstream intersection, and has to be discharged:

$$V_{m,i}^{a} = r_{m,i} \sum_{m'} V_{m',i-1}^{a}$$
 $V_{m,i}^{a} \le s_{m,i} g_{m,i}$

Green time for all the phases and lost time:

$$\sum_{p} g_{p,i} + t_l \xi =$$

Appendix: Formulations

Appendix: Formulation

Assuming the density ratio between Lanes 1 and 2 keeps constant, for each on-ramp vehicle, $\frac{o_2}{o_1 + o_2}$ vehicles would perform pre-allocation lane change. Therefore, the resulted capacity drop is $\frac{o_2}{o_1 + o_2}S_or_o$

$$C_{w} = C_{b} - \gamma S_{o} r_{o} \left(\frac{v_{1}^{2} - v_{0}^{2}}{2al} + \frac{o_{2}}{o_{1} + o_{2}} \right)$$

- *a*: Deceleration for cooperative lane change
- *l*: Average vehicle length
- v_i : Speed on lane i
- o_i : Detected occupancy on lane i
- γ : Calibrated parameter

The formulation in non-linear due to variable cycle length.

- Use discrete value for the cycle length and introduce 0-1 variables to indicate the actual value.
- Discrete possible values for the cycle length (60,65,70,.....,180)

$$\xi \rightarrow \sum_{i} y_i \frac{1}{C_i} \qquad \qquad \sum_{i} y_i = 1$$

Binary variable
$$y_1 \times \frac{1}{60} + y_2 \times \frac{1}{65} + \dots + y_{25} \times \frac{1}{180}$$

• With this formulation, each quadratic term includes at least one binary variable and is easy to solve with many solvers.