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Abstract
The rule-based incident duration prediction model (IDPM), covering Interstate highways I-95, I-495, and I-695, has been
adopted by the Maryland Department of Transportation State Highway Administration in its daily responses to non-recurrent
congestion. In light of its effectiveness and robustness in practice, expanding such a system to all other highways emerges as
desirable but a challenging task, because of the need to integrate field operators’ expertise in generating prediction rules and
the dependence on sufficient incident records for key parameter calibration. To circumvent such a data-demanding and
time-consuming process for knowledge acquisition and refinement for extending the IDPM’s spatial coverage, this study has
proposed a knowledge transferability analysis (KTA) method, featuring its automated process to assess, select, and transfer
existing prediction rules to perform incident duration estimate for the new target highway. Evaluation of the proposed KTA
with the incident records from Maryland I-70, using both transferred and customized local rules, reveals that it can achieve
accuracy of 87% with the training dataset (i.e., 2016–2018) and 82% with the test dataset (i.e., 2019), comparable to the cur-
rent system’s performance but demanding much fewer incident records for model calibration and significantly less effort for
system expansion.
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It is well recognized that traffic incidents can result in
reduction of a roadway’s capacity and degradation of
reliability, and also significant delays for commuters.
Over the past several decades, many U.S. highway agen-
cies have established Traffic Incident Management
(TIM) systems to help mitigate such impacts and restore
normal traffic conditions. A TIM system typically con-
sists of a coordinated multi-disciplinary process to detect,
respond to, and clear traffic incidents. It is expected that
such a system can effectively reduce the clearance dura-
tion of detected incidents, and reduce the resulting
impacts on traffic delay and safety. To do so, a TIM sys-
tem first needs a reliable and robust model to predict the
required duration for incident clearance operations, and
then to assess its time-varying traffic queues as well as
resulting delays, because such information is essential for
determining the proper control strategies and the respon-
sive traffic management tasks.

Transportation researchers have devoted significant
efforts to developing incident duration prediction models
(IDPMs) with a variety of techniques, including

continuous statistical models (1–20), neural network
approaches (21–28), discrete/classification methods (29–
34), and hybrid modeling techniques (35–43). Despite the
significant progress made by the traffic community on
this subject, the implementation of such an imperative
system to contend with non-recurrent congestion
remains at the infancy stage. This is partly because of the
large number of factors (see Table 1) that are critical to
an incident’s clearance time but difficult to collect at a
desirable level of accuracy for system development.
Moreover, the complex nature (e.g., discrete, continuous,
or binary) of those critically associated factors and their
distributions is inconsistent with the underlying assump-
tions of many statistical-based methods reported in the
literature. In view of such constraints, Won et al. (42)
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explored the methodology of integrating the expertise of
field responders and extensive information from the inci-
dent records to calibrate a rule-based IDPM. Their pro-
posed knowledge-based model was first applied to
Maryland I-95, and later extended to I-495 and I-695.

Further extension of the flexible and robust method
by Won et al. (42) to other Maryland highways (such as
I-70 and US 29), however, inevitably encounters the chal-
lenges of insufficient incident records for calibration of
prediction rules and the need for significant involvement
of experienced incident response operators. This study
presents a knowledge transferability analysis (KTA)
model, intending to explore the potential of constructing
a new IDPM by transferring some of those prediction
rules from existing IDPMs, based on their effectiveness,
to the new target highway. With such a computerized
and effective KTA model, traffic professionals would
need to apply the resource-demanding method proposed
by Won et al. (42) only to the small set of incidents that
exhibit unique patterns and demand local-specific inci-
dent response resources.

The next section will first provide a brief description
of the knowledge-based IDPM by Won et al. (42). This is

followed by a detailed presentation of the proposed KTA
method for new system construction. An application of
the KTA to developing the IDPM for Maryland I-70
constitutes the core of its following section. Concluding
comments and future research tasks are summarized in
the last section.

Development of a Knowledge-Based IDPM

Figure 1 illustrates the development process proposed by
Won et al. (42), using the association rule mining method
(44, 45) for rule generation and statistical tests to con-
struct prediction rules for different types of incidents.

Incident Categorization

Given the pre-processed incident dataset, first, all inci-
dent records from the target highway will be classified
into several subsets based on the incident type and lane
blockage information. For instance, all collisions result-
ing in lane closure, as shown in Figure 2, are typically
divided into three categories: collision with personal
injury (CPI), collision with property damage (CPD), and

Table 1. Factors Associated With the Clearance Time of a Detected Incident

Category Variable Classification

Incident type Incident type Collision with fatality (CF), Collision with personal injury (CPI),
Collision with property damage (CPD)

Time Hour indicator Morning peak, Day time, Evening peak, Night
Weekend indicator Weekend, Weekday
Holiday indicator Holiday, Non-holiday
Season indicator Spring, Summer, Fall, Winter

Location Direction indicator Northbound, Southbound, Eastbound, Westbound
Exit number indicator Exit 1, Exit 2, .

Environmental conditions Pavement condition indicator Dry, Wet, Snow-ice, Chemical wet
Hazard material related Yes, No

Operation center Center indicator AOC, TOC3, TOC4, TOC5, SOC
Lane blockage information # of blocked lanes 1, 2, 3, 4, .

# of blocked shoulder lanes 0, 1, 2, 3, .
# of blocked travel lanes 0, 1, 2, 3, .
# of blocked auxiliary lanes 0, 1, 2, 3, .
Travel lane blocked in tunnel Yes, No
Travel lane blocked in toll Yes, No

Involved vehicle information Vehicle status Jack-knifed, Overturned, Lost load
# of total involved vehicles 1, 2, 3, 4, .
# of involved passenger cars 0, 1, 2, 3, .
# of involved trucks 0, 1, 2, 3, .
# of involved motorcycles 0, 1, 2, 3, .

Response unit information # of total response units 1, 2, 3, 4, .
# of arrived CHART 0, 1, 2, 3, .
# of arrived police 0, 1, 2, 3, .
# of arrived fireboard 0, 1, 2, 3, .
# of arrived medical service 0, 1, 2, 3, .
# of arrived tow service 0, 1, 2, 3, .
First responder CHART, Police, Fireboard, Medical, Tow

Note: AOC = Authority Operations Center; SOC = Statewide Operations Center; TOC = Traffic Operations Center; CHART = Coordinated Highways

Action Response Team
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collision with fatality (CF). Depending on the available
incident records, one may further classify each of the
three categories by the number of closed lanes. For
instance, because of the small sample size and unique
clearance duration pattern, all incidents in CF are
grouped in one cluster. The incident records resulting in
only shoulder lane blockage are not further decomposed
either because the clearance times for all such incidents
distribute consistently within a relatively stable and short
interval.

Prediction Rules Mining Process

After the initial categorization of available incident
records, one can then proceed with the following proce-
dures to construct a set of ‘‘if-then’’ rules for the esti-
mated clearance time for each of those finalized subsets
of incidents:

CPI and CPD Incidents. The incident data in those six sub-
sets of CPI and CPD would be first classified into two
classes of ‘‘\30minutes’’ and ‘‘ø 30minutes’’ by using
the association rule mining method. The incident data
classified in the class of ‘‘ø 30minutes’’ are then further
divided into two groups of ‘‘\60minutes’’ and ‘‘ø 60
minutes’’ for searching other classification rules. With the
same logic, one can then further decompose the incident
data group of ‘‘ø 60minutes’’ into two clusters of ‘‘\120

minutes’’ and ‘‘ø 120minutes.’’ Finally, based on the dis-
tribution of the incident clearance durations, three inter-
vals of the estimated clearance duration corresponding to
the confidence levels of 60%, 70%, and 80% can be pro-
duced from the sequential classification process. Figure 3
illustrates such a process by using CPI with two-lane
blockage on I-95 from 2012 to 2015 as an example.

CF Incidents. Notably, compared with CPD and CPI,
nearly all highways, by nature, have much fewer inci-
dents resulting in both collisions and fatalities (CF). In
view of the very small sample size for CF, Won et al. (2)
suggested adopting a different searching process for iden-
tifying robust rules to estimate their required clearance
durations. A detailed illustration of such a process is
available in their works (42, 43).

Figure 4 presents the application process of the devel-
oped IDPM-I95 software, including its key input data,
underlying classification and estimation structure, and
the resulting outputs. Note that the system provides an
interval-based, rather than the point-based estimate for a
detected incident’s duration to accommodate the data
quality and availability, which are often imperfectly col-
lected during the emergency incident response process.
Additionally, such a model was later extended to I-495
and I-695; all three developed models, as shown in Table
2, have produced the expected level of performance suffi-
cient for use in daily incident response operations.

Figure 1. Development process of the knowledge-based incident duration prediction model (IDPM) (2).

Figure 2. Incident categorization based on the incident type and lane blockage information.
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KTA Methodology

The primary functions of the KTA model are, first, to
assess the transferability of available prediction rules,

and then to identify their respective priorities in the
transferring sequence. This is because the complex inter-
relations between the existing prediction rules—such as

Figure 3. An example of the sequential classification process (2).

Figure 4. The application process of the developed incident duration prediction model (IDPM)–I-95 software (42, 43).
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those mutually exclusive or supplementary in nature—
may render the effectiveness dependent not only on
which rules to adopt, but also their sequence of execu-
tion in the decision structure. Figure 5 illustrates the
process for the rule transferability analysis including:
(i) generation and update of the Rule Box to include
available prediction rules from existing systems; (ii)
ranking of key factors for constructing available predic-
tion rules; (iii) identification of the transferring priority
for available prediction rules, and (iv) effectiveness
assessment with respect to all transferred prediction
rules.

Rule Box Generation and Update

The primary function of the Rule Box is to house all
effective prediction rules from existing IDPMs for asses-
sing their transferability to a highway of similar features

and incident patterns. As such, all well-calibrated predic-
tion rules for the IDPMs for I-95, I-495, and I-695 are
collected and classified into six categories, as shown in
Figure 6, based on the nature of the incident and the
resulting number of blocked lanes. Depending on their
usage for incident duration prediction, such rules in each
category are further divided into six types with three pre-
specified thresholds for classifying incident durations
(i.e., 30, 60, and 120min).

Ranking of Key Factors Used in Constituting
Prediction Rules

As stated previously, the rule transferring priority con-
currently determines not only which rules to transfer but
also the execution structure of the new IDPM. Therefore,
the set of prediction rules having the highest transferring
priority shall have the following properties:

Table 2. Performance of Incident Duration Prediction Models (IDPMs) for I-95, I-495, and I-695 by Incident Type and Blocked Lane

Highway
Collision with travel lane blockage

CPI 1 CPI 2 CPI 3+ CPD 1 CPD 2 CPD 3+ Total

I-95 (2012–2017) 77.2%a

(446/578)
84.6%

(203/240)
78.8%

(82/104)
74.3%

(795/1070)
80.5%

(177/220)
83.7%

(41/49)
77.1%

(1744/2261)
I-495 (2015–2018) 78.7%

(392/498)
78.7%

(295/375)
61.7%

(113/183)
79.8%

(631/791)
81.6%

(301/369)
79.2%

(95/120)
80.0%

(2018/2523)
I-695 (2016–2019) 85.6%

(297/347)
82.4%

(150/182)
78.7%

(59/75)
87.0%

(842/968)
87.6%

(219/250)
82.7%

(43/52)
85.9%

(1610/1874)

Note: CPI = collision with personal injury; CPD = collision with property damage.
aThe percentage of incident durations which were correctly predicted the 80% confidence interval.

Figure 5. Illustration of the transferability analysis in the knowledge transferability analysis (KTA) model.
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� their included factors for prediction are also the
most critical set of contributors to the incident
durations on the target new highway; and

� they have achieved the highest level of prediction
effectiveness with respect to incidents on their own
highways.

The methodology for assessing the transferability pri-
ority for each set of available rules in the Rule Box, based
on the above two essential properties, is presented below.
First of all, all key factors contributing to the required
incident duration are initially classified into the following
seven categories, as shown in Table 3.

Transferability Ranking-I Analysis. The purpose of this task is
to identify the relative impacts of the above seven cate-
gories of factors on the resulting incident durations
revealed in the target new system’s incident records. To
do so, this study has adopted the permutation-based
variable-importance measure (46) for ranking analysis,
and provided a brief description of its core logic below:

Given a set of n incident records for p contributing
factors and the incident clearance duration Y, then, let
X denote the matrix of p columns and n rows, and the

Figure 6. Classification of the prediction rules in the Rule Box.

Table 3. List of the Incident Duration’s Key Contributing Factors Classified by Category

Category Description Item

Category-1 (# of responders) The number of different responders at
the incident scene

# of total response units
# of arrived CHART
# of arrived police
# of arrived fireboard
# of arrived medical service
# of arrived tow service

Category-2 (First arrived responder) Type of the first-arriving responders Police first arrived
Medical service first arrived
Tow service first arrived
CHART first arrived
Fireboard first arrived

Category-3 (Vehicle status) The number and the type of vehicles
involving in incidents and their
damage levels

Overturned, lost load, jack-knife
# of total involved vehicles
# of involved passenger cars
# of involved trucks
# of involved motorcycles

Category-4 (Pavement conditions) Indicators for the pavement conditions Wet, dry, snow-ice, chemical wet,
hazard material related

Category-5 (Lane blockage) Indicators to denote the lane blockage
conditions

# of blocked lanes
# of blocked shoulder lanes
# of blocked travel lanes
# of blocked auxiliary lanes
Travel lane blocked in tunnel
Travel lane blocked in toll

Category-6 (Operation center) Indicators reflecting different incident
response centers

AOC, TOC3, TOC4, TOC5, SOC

Category-7 (Time) Temporal-related indicators associated
with an incident

Morning peak, evening peak, daytime, night
Weekday, weekend

Holiday, non-holiday
Spring, Summer, Fall, Winter

Note: AOC = Authority Operations Center; SOC = Statewide Operations Center; TOC = Traffic Operations Center; and CHART = Coordinated

Highways Action Response Team
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column vector of y show the observed values of Y. As
such, by= f �x1ð Þ, . . . , f �xnð Þð Þ

0
denotes the correspond-

ing vector of predictions from the random forest (46) for
y for model f (), and L(by,X, y) is a loss function to
quantify the goodness-of-fit. The core algorithm can
then be summarized into the following steps:

Step-1: Compute L0 =L(by,X, y) (i.e., the value of
the loss function for the original data). Then, for each
contributing factor X j included in the model, repeat
steps 2–5.
Step-2: Create a matrix X�j by permuting the j -th
column of X, that is by permuting the vector of
observed values of X j.
Step-3: Compute the model’s predicted by�j based on
the modified data X�j.
Step-4: Compute the value of the loss function for the
modified data: L�j =L(by�j,X�j, y�j).
Step-5: Quantify the importance of X j (vip

j
Ratio) by

calculating vip
j
Ratio = L�j=L0.

With the computed importance of each contributing
factor, one can do the ranking analysis based on the fac-
tor with highest importance in each category. For
instance, if ‘‘the total number of responders’’ is identified
to be the most important factor, then the category (i.e.,
Category-1) having this factor would be assigned with
the highest rank of 1. By excluding all other factors in
Category-1 from the ensuing comparisons, if the next
one with the highest importance in the remaining list is
‘‘number of trucks involved,’’ then the category (i.e.,
Category-3) having this factor shall be assigned with the
rank of 2. The same procedures can be iteratively exe-
cuted to identify the proper rank for each of the remain-
ing categories.

Transferability Ranking-II Analysis. The core of ranking-II
analysis is to rank the importance associated with each
category of factors from the perspective of how often
they have been used in the existing IDPMs’ prediction
rules and the resulting effectiveness. The measurements
proposed for such an analysis are defined below:

Coverage: For a given category of factors, its coverage
is measured by the total number of incident records in
the base dataset (i.e., total incident records from I-
495, I-95, and I-495 for their model developments)
that have been predicted by any set of rules which
contain one or more factors from this category. For
instance, the set of 134 rules that contain either one
or more factors from the category of ‘‘# of respon-
ders’’ has been used to predict the duration for 2,979
incidents in the base dataset.

Accuracy: The total number of correctly predicted
incidents out of the total ‘‘coverage’’ associated with
each category. For instance, the group of ‘‘the num-
ber of responders’’ is assessed to yield the ‘‘accuracy’’
level of 83.42%, based on their applications to 2,797
incidents.
Proportion of conjunctive rules: The number of rules
constituted with the command ‘‘AND’’ out of the
total rules (defined as frequency) associated with each
of those seven pre-classified groups of factors.

With these measurements, one can compute the result-
ing rank for each category of factors under Rank-II
analysis with the following data envelopment analysis
method (47), in which the objective function is to maxi-
mize the total positive measurements for each category:

Maximize

Subject to
Xs

r= 1
uryrk �

Xm

i= 1
vixik ł 0Xs

r = 1
vixik = 1

ur ø 0, r = 1, . . . , s

vi ø 0, i= 1, . . . ,m

ð1Þ

where Ek denotes the relative effectiveness of category k

among all categories ( k = 1, . . . , 7), ur and vi represent
weights for the rth positive measurement (i.e., coverage
and accuracy levels) and ith negative measurement (i.e.,
proportion of conjunctive rules), respectively; yrk is the
standardized value for the rth measurement in category
k, and xik is the standardized value for its ith negative
measurement computed from the base dataset.

The computed effectiveness value for each category
will then serve as an indicator for ranking the effective-
ness of the seven categories of factors used by the exist-
ing IDPMs.

Transferability Ranking Integration. Given the rank assess-
ment from both perspectives, one can then take the fol-
lowing steps to produce the final ranking list for the
seven categories of factors:

Let d�i be the optimal rank for category i; r1
i denotes

the resulting rank from Rank-I test for category i; r2
i

represents the resulting rank from Rank-II test for cate-
gory i; and wi stands for the number of existing rules
using one or more factors from category i. Then, with
the objective function shown in Equation 2, one can
employ the method for rank aggregation by Pihur et al.
(48) to produce the final optimized ranking list for all
categories.

Min
X7

i= 1

(jd�i � r1
i j+ jd�i � r2

i j)3 wi ð2Þ
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The final ranking for the categories will be in a des-
cending order where the category ranked at the top of
the list indicates that it contains the set of contributing
factors with the most impacts on a detected incident’s
resulting clearance duration. However, it is noticeable
that the Rule Box, because of the contributions from sev-
eral well-developed IDPMs, may contain multiple pre-
diction rules for the same category of incidents, but with
different categories of factors. Thus, the following pro-
cess has been proposed in this study to finalize the opti-
mal transferring priority for such rules.

Prioritizing Candidate Rules for Transferability Analysis

For convenience of assessing the transferring priority, all
candidate rules based on their logic structure and target
incident types are characterized into four types, and each
is assigned a customized score. For example, let
Category-1 (i.e., # of responders) be the category with
the computed rank of 1 and Category-7 (i.e., time) with
the computed rank of 5, one can then follow the rules
presented below to assign the weights for each type of
rules, and subsequently determine their priority in the
transferring sequence:

Type-A rules: Assigning a score for each of those rules
with a simple ‘‘if-then’’ statement for estimating the
lower bound of an incident’s clearance duration,
based on the rank of the category that includes the
factor embedded in the rule. For instance, the rule,
‘‘IF [more than 8 response units arrived], THEN the
duration .120minutes’’ will be assigned the score of
‘‘1’’ because the condition variable of ‘‘8 response
units’’ is one of the Category-1 factors.
Type-B rules: Assigning a score for those with a sim-
ple ‘‘if-then’’ statement for estimating the upper
bound of an incident’s clearance duration, based on
the rank of the group that comprises the factor consti-
tuting the rule and an additional status score of ‘‘200’’
to ensure that all such rules will be assessed and trans-
ferred after all other types of rules. For instance, the
rule, ‘‘IF [no tow service arrived], THEN the duration
\30minutes’’ will be assigned the assessment score of
‘‘201’’ because its condition variable of ‘‘no tow ser-
vice’’ belongs to Category-1 factors.
Type-C rules: Assigning a score for those rules consti-
tuted with a nest of ‘‘if-then’’ statements and the rela-
tion of ‘‘and’’, based on the sum of scores computed
from the rank of the group associated with the factor
constituting each ‘‘if-then’’ statement in the entire set
of rules connected with ‘‘and.’’ For instance, the rule
of ‘‘IF on [holiday] AND [tow service arrived],
THEN the duration .60minutes’’ will be assigned the
assessment score of ‘‘6’’ because its two condition

variables, [holiday] and [tow service arrived], belong
to factors in Category-7 and Category-1, respectively.
Type-D rules: Assigning the score for those rules with
a nest of ‘‘if-then’’ statements and the relation of ‘‘or’’
based on the sum of its assigned priority status score
of ‘‘100’’ and the lowest rank among those categories
which include the factors embedded in all ‘‘if-then’’
statements connected with ‘‘or.’’ As such, the rule of
‘‘IF on [weekend] OR [police arrived], THEN the
duration .30minutes’’ will be assigned the assessment
score of ‘‘101’’, because its two condition variables,
[weekend] or [police arrived], belong to Category-7
and Category-1, respectively. Thus, the final assess-
ment score for this rule shall be the sum of ‘‘100’’ plus
‘‘1.’’

Transferability Effectiveness Test

As with the standard practice for transferability analysis,
this study adopts the following two measures of effective-
ness for assessing each candidate rule’s performance with
respect to the incident records from the target roadway:
(i) the confidence level that demonstrates the accuracy of
a candidate rule and (ii) the support level that shows the
percentage of incident records that are consistent with
the set of ‘‘if’’ conditions in an identified prediction rule.

Conceivably, those prediction rules yielding a suffi-
ciently high confidence level and having a reasonable sup-
port level will be deemed transferable. As illustrated in
Figure 7, the entire process for transferability effective-
ness assessment with respect to all candidate prediction
rules in the Rule Box can be illustrated with the follow-
ing steps:

Step-1: Determine the minimum confidence level
(X%) and the lower bound (SL%) as well as the upper
bound ( SU%) of the support level, based on the infor-
mation in the Rule Box and the available incident
records from the target highway.
Step-2: Utilize the incident data in each subset of CPI
and CPD on the target highway to verify the effective-
ness of each candidate rule with respect to its applica-
ble incident group.
Step-3: Transfer the prediction rule to the new model
if it can achieve the confidence level and the support
level specified at Step-1.
Step-4: Filter out the incident records already success-
fully classified by a prediction rule from the target
incident dataset, and proceed with the same transfer-
ability analysis process with the remaining incident
records.
Step-5: Stop the transferring process if no more classi-
fication rule can be transferred; otherwise, go to
Step-2.
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Case Study: I-70 in Maryland

For illustration and evaluation of the proposed KTA
method, this study has selected I-70 in Maryland for the
case study. The 2016–2018 incident records from the
CHART II Database were used for model calibration,
and those from 2019 served for performance evaluation.
As illustrated in Figure 8, the system covers I-70 from
Exit 1 to Exit 94 in Maryland.

Incident Categorization

Figure 9 shows the results of the initial incident categori-
zation, including the mean for each categorized group
and the range of its variation within the confidence inter-
vals of 60%, 70%, and 80%. Note that because of the
lack of sufficient samples, CPI3 and CPD3 are merged
with CPI2 and CPD2, respectively.

Transferability Ranking-I

Figure 10 shows the results of ranking-I transferability
analysis, where the relative importance of the seven cate-
gories is based on the factor of highest rank included in

each category. For instance, ‘‘# of total responders’’ is
identified to be the most important factor, thus the cate-
gory (i.e., Category-1: # of responders) including this
factor would be assigned the highest rank of 1. Then, by
excluding all other factors in Category-1 from the list for
comparison, the next one with the highest importance is
‘‘# of involved trucks.’’ Therefore, Category-3 (i.e.,
Vehicle status), containing this factor, shall be assigned
the rank of 2.

Transferability Ranking-II

Table 4 presents the properties of seven categories of fac-
tors used to construct the prediction rules from the exist-
ing IDPMs. The results of transferability ranking
analysis with respect to their effectiveness, where those
categories with higher E-values are given higher priorities
in the sequence of the transferability assessment.

Finalized Ranking for Transferability Assessment

Table 5 reports the finalized ranking results, reflecting
the relative importance of those categories of factors in
the transferability assessment. For instance, those

Figure 7. Flow chart of the transferability test in the classification rules transferring process.

Figure 8. Spatial scope of the incident duration prediction model (IDPM)–I-70.
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candidate prediction rules, comprising factors from the
category ‘‘# of responders’’ should be given the highest
priority in the sequence of transferring effectiveness
assessment for I-70.

Transferring and Generation of Prediction Rules

Overall, 36 out of the total 54 prediction rules in the
IDPM–I-70 are transferred from existing IDPMs for I-

Figure 9. Initial incident categorization and estimated clearance duration for I-70.

Figure 10. Results of transferability ranking-I analysis for I-70.
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95, I-495, and I-695, and the remaining 18 rules were
calibrated with the same method by Won et al. (42) to
reflect some local-unique incident patterns. Figure 11
illustrates the example of the rule-generation process for
CPI2 and its application with all embedded ‘‘if-then’’
rules. Table 6 lists the prediction rules of IDPM–I-70
transferred from IDPMs for I-95, I-495, and I-695.

Model Evaluation

The evaluation results of the IDPM for I-70 with both
transferred and customized local rules are shown in
Table 7. Noticeably, the IDPM–I-70 constituted mostly
of transferred rules (i.e., 36 out of 54 rules) can achieve
the accuracy level of 87% with the training dataset (i.e.,
2016–2018) and 82% with the test dataset (i.e., 2019). Its
level of performance is comparable with existing IDPMs,
but demands much less resource with an automated
computer program and does not need to be constrained
by the available size of incident records.

Table 8 shows the comparison results between the
IDPMs for I-70 with and without the KTA model, where
the former yields a better accuracy despite both models
having similar training accuracy. This is because, even
though one can find the common prediction rules among
incident records in the training dataset to fit with a suffi-
cient level of accuracy, such rules may be too location-
specific (e.g., overfit), because of the lack of enough data
samples, to capture those incident records in the test
dataset. In contrast, the proposed KTA model relies on
empirical rules from previously-developed IDPMs which

have demonstrated their reliability in field applications.
Thus, it can be more robust in providing an acceptable
and even better accuracy, especially for those incidents
with insufficient incident records for model calibration.

Conclusion

To circumvent the demanding development efforts and
the need for an extensive dataset for calibration of an
IDPM’s prediction rules, this study has developed an
innovative KTA model that allows the construction of a
new system to take advantage of existing IDPMs’
embedded rules with an automated process. The pro-
posed model features its use of a series of transferability
analysis methods with respect to the existing IDPMs to
identify the effectiveness and transferring priority of
those adopted prediction rules.

The effectiveness of the proposed model has been eval-
uated with the incident data from I-70 in Maryland. The
result of extensive evaluation with multi-year incident
records indicates that the performance of the IDPM for
I-70, with 67% of transferred rules, can yield a prediction
accuracy comparable with existing IDPMs that demand
much more development resources. Although a more
extensive assessment of the proposed KTA method can
be done for other highways in different regions, the pre-
liminary results from the I-70 case study seem to offer a
promising avenue for responsible highway agencies to
cope with the difficulty of insufficient incident records in
the IDPM development for some highways.

Table 4. Results of Transferability Ranking-II Analysis for I-70

# of responders
First arrived
responder

Vehicle
status

Pavement
conditions

Lane
blockage

Operation
center Time

Coverage (no. of cases) 2979/0.665a 247/0.074 1478/0.640 1220/0.203 343/0.154 596/0.079 684/0.268
Accuracy (mean) 83%/0.377 75%/0.341 85%/0.383 89%/0.404 88%/0.398 82%/0.370 82%/0.371
Proportion of

conjunctive rules
0.59/0.331 0.80/0.449 0.64/0.357 0.39/0.246 0.68/0.380 0.69/0.386 0.81/0.457

E-val 1.000 0.411 0.642 1.000 0.567 0.521 0.444
Rank 1 7 3 1 4 5 6

a
The left-hand side of the number is the measurement (e.g., 2,979), while the right-hand side is the normalized measurement (e.g., 0.665).

Table 5. Final Ranking Analysis Results for all Categories of Factors

# of
responders

First arrived
responder

Vehicle
status

Pavement
conditions

Lane
blockage

Operation
center Time

Frequency 134 15 129 41 31 16 54
Transferability ranking-I 1 6 2 4 3 7 5
Transferability ranking-II 1 7 3 1 4 5 6
Optimal transferability ranking 1 7 2 4 3 6 5
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Table 6. Prediction Rules of the incident duration prediction model (IDPM) for I-70 Transferred from I-95, I-495, and I-695

Transferred rules description—CPI1
IF [Tow service arrived] THEN ø 30
IF [More than 3 vehicles involved] THEN ø 30
IF [More than 1 CHART arrived] AND [Police first arrived] THEN ø 30
IF [Peak hour] AND [More than 2 vehicles involved] THEN ø 30
IF [Car overturned] AND ([Weekend] OR [Tow service arrived]) THEN ø 30
IF [Fireboard first arrived] THEN \ 30
IF [Snow-ice pavement] OR [More than 1 truck involved] OR [More than 7 response units

arrived] OR [AOC center]
THEN ø 60

IF [No tow service arrived] AND [No truck involved] THEN \ 60
IF [Less than 4 response units] OR [No truck involved] THEN \ 120

Transferred rules description—CPI2
IF [Tow service arrived] THEN ø 30
IF [More than 4 response unit arrived] THEN ø 30
IF [Dry pavement] THEN \ 30
IF [More than 6 response units arrived] THEN ø 60
IF [More than 1 Fireboard arrived] OR [Snow-ice pavement] THEN ø 60
IF [No tow service arrived] OR [No truck] THEN \ 60
IF [More than 7 response units arrived] OR [More than 5 vehicles involved] THEN ø 120
IF [More than 1 truck involved] OR [More than 3 vehicles involved] OR [Hazard materials

related] OR [More than 7 response units arrived]
THEN ø 120

IF [More than 4 vehicles involved] OR [Wet pavement] THEN ø 120
Transferred rules description—CPD1

IF [Tow service arrived] AND [Fireboard arrived] THEN ø 30
IF [More than 2 CHART arrived] AND [CHART first arrived] THEN ø 30
IF [Wet pavement] AND [More than 1 police arrived] AND [Auxiliary lane blocked] AND

[Shoulder lane blocked]
THEN ø 30

IF [More than 2 CHART arrived] OR ([More than 4 response units arrived] AND [Wet
pavement])

THEN ø 30

IF ([Daytime] AND [More than 4 response units arrived]) OR ([Truck involved] AND [More
than 1 police arrived])

THEN ø 30

IF [Dry pavement] THEN \ 30
IF [More than 6 response units arrived] OR [Truck overturned] OR [Bus involved] OR

[Vehicle lost load]
THEN ø 60

IF [Truck involved] AND ([More than 5 response units arrived] OR [Auxiliary lane blocked]) THEN ø 120
IF [Snow-ice pavement] OR ([Auxiliary lane blocked] AND [Chemical wet pavement]) THEN ø 120

Transferred rules description—CPD2
IF [Tow service arrived] AND [Fireboard arrived] THEN ø 30
IF [Snow-ice pavement] OR [Chemical wet pavement] OR [Truck jack-knifed] OR [More than

6 response units arrived]
THEN ø 30

IF ([Night] OR [More than 4 response units arrived]) AND [More than 1 police arrived] THEN ø 30
IF [Car overturned] OR [More than 1 shoulder lane blocked] OR ([Truck involved] AND

[Pickup involved])
THEN ø 30

IF [More than 1 tow service arrived] THEN ø 60
IF [Truck involved] AND [More than 5 response units arrived] THEN ø 60
IF ([Truck involved] OR [More than 2 vehicles involved]) AND [Night] THEN ø 60
IF [More than 1 tow service arrived] THEN ø 120
IF [No truck involved] THEN \ 120

Note: CPI = collision with personal injury; CPD = collision with property damage; CHART = Coordinated Highways Action Response Team.

Table 7. Results of Model Evaluation for IDPM–I-70

Evaluated by groups of incident records

CPI1 CPI2 CPD1 CPD2 CF Overall

Training set (2016–2018) 87.80% (36/41) 85.37% (35/41) 86.17% (81/94) 87.50% (35/40) 100% (6/6) 86.94% (193/222)
Test set (2019) 100.00% (10/10) 68.75% (11/16) 78.26% (18/23) 90.00% (9/10) 100% (1/1) 81.67% (49/60)

Note: CPI = collision with personal injury; CPD = collision with property damage; CF = collision with fatality. Numbers in parentheses represent ‘‘the

number of data whose clearance time is correctly estimated by the model/the total number of incident records in the group.’’
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Future research along this line includes: (i) extending
the KTA model’s application to major signalized arterials
mostly with a small sample of well-documented incident
records, and (ii) constructing a supplemental module to
enhance the efficiency and robustness of the rule-based
IDPMs.

Figure 11. An example of an application for collision with personal injury (CPI) with two-travel-lane blockage: (a) the generation
process of the prediction rules and (b) the application process.

Table 8. Comparison Between the Models Developed With and
Without the Knowledge Transferability Analysis (KTA) Model

Model 1 Model 2

KTA model Yes No
Training accuracy (%) 86.94 83.84
Testing accuracy (%) 81.67 69.05
Total number of rules 54 31
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