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Abstract-This paper proposes a variation-based online travel 
time prediction approach using clustered Neural Networks with 
traffic vectors extracted from raw detector data as the input 
variables. Different from previous studies, the proposed 
approach decomposes the corridor travel time into two parts: 1) 
the base term, which is predicted by a fuzzy 
membership-value-weighted average of the clustered historical 
data to reflect the primary traffic pattern in the corridor; and 2) 
the variation term, which is predicted through the calibrated 
cluster-based artificial neural network model to capture the 
actual traffic fluctuation. To evaluate the effectiveness of the 
proposed approach, this paper has conducted intensive 
numerical experiments with simulated data from the 
microscopic simulator CORSIM. Experimental results under 
various traffic volume levels have revealed the potentials for the 
proposed method to be applied in online corridor travel time 
prediction. 

I. INTRODUCTION 
S is well recognized, travel time information plays an 
portant role in the Advanced Travelers Information 

Systems (ATIS), which has the potential of providing 
dynamic route guidance for travelers, increasing the 
reliability in road networks, and alleviating congestion and its 
negative environmental/social side effects [1]. Travel time 
prediction, which refers to the calculation of the travel time at 
the time the vehicles start their trips, is a highly complex and 
challenging problem, as travel times are the results of 
complex nonlinear interactions of heterogeneous groups of 
driver-vehicle combinations. Furthermore, exogenous factors 
(such as availability of vehicle detector system, traffic delay 
and missing of real-time data) are often beyond control of the 
prediction model. 

im

In review of the literature, researchers have attempted to 
implement both parametric and nonparametric approaches to 
forecast travel times. Among parametric models, promising 
results were achieved using regression models [2], 
time-series models [3], and Kalman Filter models [4]. 
Meanwhile, lots of researchers have devoted considerable 

attention to nonparametric models, which include artificial 
neural network (ANN) models [1, 5, 6, 7, 8], nearest 
neighborhood models [9], and simulation models [10, 11, 
12], due to their robust performance. Many studies have 
demonstrated that ANNs have the potential to accurately 
predict travel time on freeways, including modular neural 
network model [5], spectral basis neural network model [6], 
and state-space neural network model [1, 7] etc. Nearest 
neighborhood model can provide reasonably good 
performance when a sufficient number of similar historical 
cases can be obtained. Simulation-based approaches (e.g., 
SBOTTP [10], DYNAMIT [11]) can also be used as a 
cost-effective tool for travel time prediction. 
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Despite the promising work by previous studies, the 
following drawbacks remain to be further addressed: 

• Most studies predicted travel times in a link-based way 
assuming that corridor travel time is the addition of the 
travel times on its consisting links during the prediction 
period. However, those approaches may not be reliable 
due to the neglect of time lag between prediction periods 
of different links and accumulation of link prediction 
errors;  

• Some studies use travel times in previous time periods as 
inputs, which limits them to be applied online because 
travel times in previous time periods may not be 
available before they are realized; 

• Previous studies treated the travel time as a single 
component and predict it directly, which may have large 
prediction errors. 

To accommodate the aforementioned issues, this paper 
presents a variation based approach for real-time travel time 
prediction focus on the following specific issues: 

• The proposed prediction model predicts travel time at the 
entire corridor level rather than the link-based level to 
overcome the accumulation of link travel time prediction 
errors, as well as to fully take advantage of the historical 
corridor travel time data;  

• The proposed prediction model takes detector data 
instead of travel time in previous intervals as inputs and 
is more suitable to be eligible for online application;  

• The proposed prediction model tries to make the 
prediction results more robust by decomposing the 
corridor travel time into a base term and a variation term. 
The base term can make full use of the historical data to 
capture the primary traffic pattern in the corridor, while 
prediction of the variation term will represent the traffic 
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fluctuation.  
This paper is organized as follows. A model framework 

that consists of online and offline procedures will be 
introduced in Section II. Section III presents five key 
functional modules of the proposed model, including data 
collection module, data processing and pattern identification 
module, base travel time prediction module, travel time 
variation prediction module, and final travel time output 
module. Section IV evaluates the performance of the 
proposed model on a segment of US50 eastbound to Ocean 
City, Maryland under different demand scenarios using data 
from CORSIM. Finally, a concluding discussion follows in 
Section V, including a summary of the proposed approach 
and future extensions. 

II. MODEL FRAMEWORK 
This section presents the model framework (see Fig. 1) for 

the proposed online travel time prediction approach. 
As shown in Fig. 1, the entire framework for online travel 

time prediction consists of two main procedures: 
• Off-line procedure: Integrated with a comprehensive 

historical database, the off-line procedure functions to 1) 
collect, store and provide required traffic data (i.e. 
volume, speed, and historical travel time); 2) classify 
different traffic patterns based on clustering techniques 

and calculate the mean travel time for each cluster;  and 
3) calibrate ANN models for each cluster; 

• On-line procedure: Based on the clustering results and 
calibrated models from the off-line procedure, the 
on-line procedure serves to fulfill the following five 
tasks. 1) Process real-time detector data and extract the 
input traffic vector; 2) Calculate fuzzy membership 
values of the extracted traffic vector for all clusters; 3) 
Predict the base travel time term based on the 
membership-value-weighted average of all cluster 
means; 4) Apply the clustered ANN model to predict the 
variation term for each cluster, and calculate their  
membership-value-weighted average as the travel time 
variation term; 5) Sum up the base term and variation 
term to output the  total predicted travel time. 

During the real-world operation, the offline and online 
procedures will interact with each other through various 
seamlessly integrated modules, including data collection 
module [(A), (B), and (F)], data processing and pattern 
identification module [(C) and (G)], base travel time 
prediction module [(D) and (H)], travel time variation 
prediction module [(E) and (I)], and final travel time output 
module [(J)]. Each of its five functional modules will be 
elaborated below. 

 
Fig. 1 A conceptual framework for online travel time prediction 



  

III. KEY MODULES 

A. Data Collection Module 
This module provides basic input information to both 

online and offline models for travel time prediction. It 
includes two parts: historical data archiving and real-time 
detector data collection.  

A comprehensive offline database plays a key role in 
archiving and organizing historical data, including the 
following information: 

•  Historical traffic volume & speed data (from roadside 
detectors) representing different traffic patterns at the 
target corridor in different time periods; 

•  Historical corridor travel time in one time period ahead 
(either from direct measurement or offline estimation 
approaches). For example, for the record of historical 
speed and volume data collected in the time period k, 
historical corridor travel time in time period k+1 will be 
matched with it. 

This module is also responsible for collecting real-time 
traffic volume & speed (from detection equipment) in each 
time period to represent the current traffic pattern on target 
corridor and update the prediction results. 

B. Data Processing and Pattern Identification Module 
Traffic data collected from the entire corridor in the 

preceding time periods are important parameters for 
identifying future travel time patterns. However, it is difficult 
to directly apply those raw data to represent the traffic pattern 
when the number of detectors and selected preceding time 
periods is large.  

This module functions to efficiently reduce the 
dimensionality of raw data by extracting one traffic vector 
which can represent the dynamic traffic patterns for the target 
corridor, as shown in Equation (1) - (2):  
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Where,  
i   : Index of link; 
k   : Index of time periods; 
j   : Index of previous time intervals from 1 to ikΔ ; 
n   : Number of links in the target corridor; 

)(kϕ
r  : A 2n-dimensional vector at the time period k; 

)(kiϕ
r  : A 2-dimensional vector (volume, speed) on link i at 

the time period k; 
)(ksi

r  : A 2-dimensional traffic data vector (volume, speed) 
for the ith detector at the time period k; 

)( jwi  : Weight of previous time period j for link i; 

ikΔ  :  Num. of the preceding time periods used for link i. 

In this module, the 2n-dimensional vector )(kϕ
r which 

consists of those different 2-dimensional vectors )(kiϕ
r  

represents the specific traffic pattern for the entire corridor up 
to time period k (including both current and previous time 
period). )(kiϕ

r  is a weighted measure of traffic status of link i 
up to the time period k. To account for the maximal possible 
impact of previous traffic data, the number of previous time 
periods ( ikΔ ) used for calculating )(kiϕ

r is chosen to be the 
maximal estimated travel time from detector i to destination 
based on historical data, as shown in Fig. 2.  

It would be reasonable to expect that weights for traffic 
data in the more recent time period are higher, based on the 
assumption that the more recent information would influence 
the future states more. Fig. 3 demonstrates the potential 
weight functions used for different time periods. In this 
module, we take the linear form weight function as shown in 
Equation (3): 
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Where,  
maxw  : Maximal weight (1.0 in this paper); 
minw  : Minimal weight (0.1 in this paper). 

 
Fig. 2 Num. of the preceding time periods used for different links

 
Fig. 3 Weight functions for different time periods

C. Base Travel Time Prediction Module 
This module functions to predict the base travel time in 

order to capture the primary traffic pattern at the target 
corridor. As is reported in the literature and observed in the 
field survey, traffic patterns on a corridor may vary 
significantly during the morning peak hours, evening peak 
hours, and off-peak hours due to the complex interactions of 
many factors with time-varying natures. Therefore, it would 
be more accurate to predict the base travel time by 
pre-classifying the traffic patterns into several simpler 
classes.  



  

Considering the actual classification scheme is not known 
as a priori, an unsupervised learning model may be more 
suitable for clustering traffic patterns. This module employs a 
fuzzy c-means clustering algorithm, which had given 
outstanding results in previous related studies [5]. As shown 
in Fig. 4, the procedure for base travel time prediction 
includes both off-line and on-line parts. Based on the 
comprehensive historical database provided by data 
collection module, the off-line procedure aims to identify 
cluster centers, and as well as calculate the mean travel time 

cTT for each cluster, which is a fuzzy membership value 
weighted average of historical travel time samples. On the 
other hand, the on-line part first acquires real-time traffic 
pattern vectors at time period k, and then calculates cluster 
membership values ))(( kc ϕμ , which defines the degree to 
which the vector )(kϕ

r  belongs to the cth cluster. Finally, this 

module predicts the base travel time by conducting a 
))(( kc ϕμ weighted average of each cluster mean cTT , as 

shown in Equation (4): 
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Where,  
)1( +kTTb   : Predicted base travel time at time period k+1 

for the corridor; 
 cTT    : Mean travel time corresponding to cluster c; 

))(( kc ϕμ  : Fuzzy membership value of vector )(kϕ
r  

corresponding to cluster c; 
C    : Number of clusters. 

 
Fig. 4 Procedures for base travel time prediction using fuzzy c-means clustering algorithm 

D. Travel Time Variation Prediction Module 
This module aims to predict the variation of travel time to 

reflect the real-time traffic fluctuation in the target corridor 
through pre-calibrated clustered Neural Network models. For 
each cluster, the feed-forward Multilayer ANN was selected 
and the back-propagation algorithm was implemented to train 
the neural network in order to minimize the errors between 
the actual and desired output. Fig. 5 illustrates the topology of 
the Neural Network model for each cluster. Each neuron in 
the input layer receives inputs from )(kiϕ

r , and the output layer 
consists of one neuron which is the predicted travel time 
variation on the target corridor at time interval k+1 for each 
cluster. One hidden layer was determined for the 
back-propagation structure. 

Similar to the procedure of calculating the base travel time, 
the travel time variation is predicted as a fuzzy-membership 
-value-weighted average of the outputs from all cluster based 

ANNs, as shown in Equation (5): 
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Where,  
)1( +Δ kTT : Predicted travel time variation at time period 

k+1; 
)1( +Δ kTTc : Predicted travel time variation at time period 

k+1 for the cth cluster. 

E. Final Travel Time Output Module 
The total predicted travel time at time period k+1 is the 

sum of base travel time and travel time variation, given by the 
following Equation: 



  

 
Fig. 5 Topology of the Neural Network model for travel time variation prediction 

)1()1()1( +Δ++=+ kTTkTTkTT b             (6) 

IV. NUMERICAL EXPERIMENT 

A. Test Network 
An approximately 7.1 mile section of US50 eastbound to 

Ocean City, MD was modeled in CORSIM (see Fig. 6) to 
generate the data for clustering, ANN training, and testing. 
This arterial section was comprised of 11 2-lane links and 10 
signalized intersections with speed limits varying between 35 
and 55 miles per hour. 11 detectors, which programmed to 
record flow and speed data, were located at the upstream of 
each link. 

B. Experiment Design 
To create a training and testing dataset under different 

traffic conditions, the travel demand loadings on the network 
lasting from 7:30am to 8:30pm were varied hourly based on 
the observed real world traffic pattern, as shown in Table I, in 
which free-flow traffic, moderated congested traffic, and 
heavily congested traffic are all considered. As the first 30 
minutes of simulation is used to warm-up and some of the 
vehicles departure in the last 30 minutes could not arrive the 
destination before the end of the simulation, 12-hour (8:00 am 
~ 8:00 pm) detector data and travel times are used for 
analysis. 7200 data records (10days x 12 hours/day x 60 time 
periods/hour) are generated for training and testing the 
proposed models. 

Among these 7200 data records, nearly 6,500 samples (9 
days x 720 periods a day) were employed to 1) identify 
cluster centers (the number of cluster we chose in this paper is 

10) and calculate the fuzzy-membership-value-weighted 
mean travel time for each cluster;  and 2) calibrate ANN 
models for each cluster. Meanwhile, 720 samples were used 
to validate the performance of the proposed models. 

TABLE 1 
HOURLY VARIED TRAVEL DEMAND LOADING 

C. Performance Evaluation 
Fig. 7 shows the comparison of the predicted travel time 

and the CORSIM results. The x-axis denotes the departure 
time of day (i.e. from 8:00am~8:00pm) whereas the y-axis 
denotes the travel times in minutes. From the figure below, 
we can see that the predicted travel times showed a very 
similar trend to the simulated results. 

Table II evaluates the performance of the developed 
models by two indices: Root Mean Square Error (RMSE) and 

 
Fig. 6 Illustration of the study area 

 
Fig. 7 Comparison of predicted travel time with CORSIM simulation 

results 



  

Root Mean Square Percentage Error (RMSP). As indicated in 
the table below, one can reach the following findings: 

• As a whole, the proposed models produce reasonably 
good results with 1.29 minute RMSE and 0.087 RMSP; 
and 

• For the peak hours in which predicting travel time 
reliably is a challenge, the proposed models can provide 
promising prediction accuracy (with RMSP equal to 
0.083) due to the embedded base term which is capable 
of capturing primary traffic patterns. 

V. CONCLUSION AND FUTURE EXTENSIONS 
This paper proposes a variation-based online travel time 

prediction approach using clustered Neural Networks with 
traffic vectors extracted from raw detector data as input 
variables. The total predicted travel time is comprised of  two 
parts: base travel time and travel time variation. The base 
term is predicted by a fuzzy-membership-value-weighted 
average of the clustered historical data to reflect the primary 
traffic pattern, while the variation term is predicted through 
the calibrated cluster-based artificial neural network model to 
capture the actual traffic fluctuation. Numerical experiments 
on a segment of US50 eastbound to Ocean City, Maryland 
under different demand scenarios using data from CORSIM 
illustrate that the proposed appoach is capable of reliably 
predicting corridor travel time. 

Although the results of the proposed approach are 
promising, a number of issues still need to be resolved in 
future studies: 

(1) The proposed models will be tested with field data 
under more complex real world traffic conditions;  

(2) Advanced ANN structures could be employed to 
achieve better prediction performance; 

(3) Sensitivity analysis of the number of cluster should be 
taken into account to obtain the optimal number of clusters 
with the minimal prediction errors. 

REFERENCES 
[1] J. W. C. Van Lint, “Reliable Real-Time Framework for Short-Term 

Freeway Travel Time Prediction”. J. Transp. Eng., vol. 132, no. 12, pp. 
921-932, December, 2006. 

[2] J. Rice and E. V. Zwet “A simple and effective method for predicting 
travel time on freeway,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 3, 
pp. 200–207, Sep. 2004. 

[3] D. Billings and J. S. Yang “Application of the ARIMA Models to Urban 
Roadway Travel Time Prediction - A Case Study”, In Proc. of IEEE 
International Conference on Systems, Man, and Cybernetics, pp. 
2529–2534, Taipei, Taiwan, 2006 

[4] M. Chen and I. J. Chien, “Dynamic freeway travel time prediction using 
probe vehicle data: Link-based vs. path-base,” Transportation 

Research Record, No.1768, pp. 157–161, National Research Council, 
Washington, D.C., 2001. 

[5] D. Park and L. Rilett, “Forecasting multiple-period freeway link travel 
times using modular neural networks,” Transportation Research 
Record, No.1617, pp. 163–170, National Research Council, 
Washington, D.C.,  1998.  

[6] D. Park, L. Rilett, and G. Han, “Spectral basis neural networks for 
real-time travel time forcasting,” J. Transp. Eng., vol. 125, no. 6, pp. 
515-523, November/December, 1999. 

[7] J. W. C. Van Lint, S. P. Hoogendoorn, and H. J. Van Zuylen, “Accurate 
freeway travel time prediction with state-space neural networks under 
missing data,” Transportation Research Part C 13, pp. 347-369, 2005. 

[8] C. H. Wei and Y. Lee, “Development of freeway travel time forecasting 
models by integrating different sources of traffic data,” IEEE Trans. 
Veh. Tech., vol. 56, no. 6,  pp.3682-3694, November 2007 TABLE II 

PERFORMANCE EVALUATION FOR TRAVEL TIME PEDICTION

 

[9] N. Zou, “A reliable travel time prediction system with sparsely 
distributed detectors”, Ph. D. Dissertation, University of Maryland, 
2007. 

[10] Y. Liu, P. W. Lin, X. R. Lai, G. L. Chang and A. Marquess, 
“Developments and applications of simulation-based online travel time 
prediction system: Traveling to Ocean City, Maryland,” Transportation 
Research Record, No.1959, pp. 92–104, National Research Council, 
Washington, D.C.,  2006. 

[11] M. Ben-Akiva, M. Bierlaire, D.Burton, H. N. Koutsopoulos, and R. 
Mishalani, “Network state estimation and prediction for real-time 
transportation management applications.” 81st Transportation Research 
Board Annual Meeting, Washington, D.C. 2002 (CD-ROM) 


	I. INTRODUCTION
	II. MODEL FRAMEWORK
	III. KEY MODULES
	A. Data Collection Module
	B. Data Processing and Pattern Identification Module
	Base Travel Time Prediction Module
	D. Travel Time Variation Prediction Module
	E. Final Travel Time Output Module

	IV. NUMERICAL EXPERIMENT
	Test Network
	B. Experiment Design
	C. Performance Evaluation

	V. CONCLUSION AND FUTURE EXTENSIONS

