Development of a Traffic Incident Management System for Contending with Non-recurrent Highway Congestion

Overview

- Introduction
- Component 1: Incident response management strategies
- Component 2: Prediction models for clearance times
- Component 3: A detour decision support system
- Contributions, future research, and conclusions

Research Background

- Non-recurrent traffic congestion due to incidents has contributed up to 60 percent of the total freeway corridor delay in the United States (Lindley, 1987).
- About 25 percent of congestion in the U.S. is incident-related (FHWA, 2005).

The starting time and duration of non-recurrent congestion, due mainly to incidents, are random in nature.

Thus, it is critical to have an efficient and effective incident management system.

Key Tasks in an Incident Management System

- An optimal deployment strategy for response units
- Estimation of required clearance times for reported incidents
- Detour feasibility analysis
- Detour optimization analysis
- Provide travel time information to roadway users
 - queue, delay and travel time analysis

Incident Management System

Needs for Each Component

1. Incident Response Management Strategies

To maximize contributions of incident response units with limited resources by assigning them to optimal locations.

2. Prediction Models for Clearance Times

 To contend with stochastic nature of clearance times so as to maximize the system's operational reliability.

3. A Detour Decision Support System

 To facilitate responsible agencies to perform efficient traffic management in real time operations.

Research Objectives

1. Incident Response Management Strategies

 Develop a deployment strategy for incident response units to minimize the total incident-induced delay

2. Prediction Models for Clearance Times

 Develop a reliable model to estimate the clearance duration of a detected incident, and to identify critical contributing factors as well as their interrelationships

3. A Detour Decision Support System

 Develop a detour decision support model for control center staff to determine the necessity of detouring traffic

1. Incident Response Management Strategies

Literature Review

- Facility location problem
 - how many response units are needed?
 - where should they be allocated in response to the temporal and spatial distribution of incidents?
 - 1) Covering models (Toregas et al., 1971; Schilling et al., 1979; Hogan and ReVelle, 1986; Nair and Miller-Hooks, 2009)
 - P-median models; and (Hakimi, 1964; Carson and Batta, 1990; Haghani et al., 2003; Yang et al., 2005)
 - 3) P-center models (Sylvester, 1857; Garfinkel et al., 1977; ReVelle and Hogan, 1989; Talwar, 2002)
- Minimize the number of service stations, the total operational costs, or to maximize the demand (incidents) covered by the pre-determined number of facilities

Data Sources

- Incident management program operated by Maryland state highway administration (MDSHA)
 - <u>Coordinated Highways Action Response Team (CHART)</u>
 - Has documented incident-related information over the past two decades
 - Date/time, location, nature, involved vehicles, lane closure...

Effectiveness of CHART

CHART responded approximately **81** % (22,796/28,345) of incidents during last two years

Does the CHART involvement matter?

	w/o CHART	w/ CHART
Mean on CT (mins)	37.91 -	→ 27.51

CHART reduced the avg. clearance time by 27 %

Does the **prompt** CHART response matter?

First responder	Others	CHART
Mean on CT (mins)	39.49 -	→ 21.85

CHART reduced the avg. clearance time by 45 %

Needs for Research

- ❖ The efficient response of CHART can contribute to the reduction in not only the response time but also the clearance time → reduction in delay
- However, not all incidents can be promptly responded by CHART due to their limited resources
- Therefore, it is critical to develop a strategy to optimally deploy available response units so as to maximize their contributions

Model Construction

Inputs

 Incident distribution, incident duration, lane blockage information, traffic volume, capacity, and available resources

Objective function

Minimize the total delay induced by incidents

Constraints

- Every freeway segment must be served by one unit
- Response units can only be dispatched from location i if they are stationed there
- The total number of response units is limited by available resources

Outputs

Assigned station and coverage for each unit

Relations between Incident Duration and Total Delay

1. Incident Response Management Strategies

Model Formulation

Objective Function: Min total delay for responded incidents

$$\min_{\tau} x, y \sum_{i} \lim_{t \to \infty} j \lim_{t \to \infty} x \lim_{t \to \infty} \int_{t} d\mu \int_{t$$

Total Delay

1. Delay from incidents occurring at node j (Olmstead, 1996)

$$d\downarrow j (t\downarrow ij) = 1/2 T\downarrow ij \uparrow 2 (q\downarrow j - rc\downarrow j\uparrow) (c\downarrow j - rc\downarrow j\uparrow /c\downarrow j\uparrow - q\downarrow j)$$

 T_{ij} : Response Time + Clearance time

Stochastic nature

2. Response time and clearance time (Olmstead, 1996)

- xlij=1 if incidents at j are responded by a response unit at i
- $y \neq i = 1$ if a response unit is stationed at i
- G(N,A): a network of freeways, where N and A are the sets of nodes and links
- i, j: index for nodes $i, j \in N$
- $f \downarrow j \uparrow$: probability that an incident occurs at node j
- $t\downarrow ij$: travel time from i to j
- d↓j: delay from incidents
 occurring at node j according to
 t↓ij
- $T \downarrow ij$: response time + estimated

$$T \downarrow ij 12 = \{ \blacksquare \& (RT \downarrow 1 + CT \downarrow 1) \uparrow 2 + Var(CT \downarrow 1) \& (t \downarrow ij + CT \downarrow 2 - 1) \uparrow 2 + Var(CT \downarrow 2 - 1) & (RT \downarrow 2 + CT \downarrow 2 - 2) \uparrow 2 + Var(CT \downarrow 2 - 2)$$

CHART is not involved

• $q \downarrow j$: traffic volume at jCHART is involved and first responder

CHART is involved but inot the displacity at jresponder

Model Formulation (cont'd)

Constraints:

1. Every freeway segment must be served

$$\sum_{i} i \widehat{j} x \downarrow i j$$

$$= 1 \qquad \forall i \in \mathbb{N}$$

2. Response units can only be dispatched from location i if they are stationed there $(y_i = 1)$

$$x \downarrow ij \le \forall j \in N$$

3. The total number of available response units is limited by available resources (R)

$$\sum i \uparrow \equiv y \downarrow i \leq R$$

$$x \downarrow ij \uparrow = [0,1] \forall (i,j) \in \mathbb{N}$$

$$y \not i = [0,1] \quad \forall \ i \in \mathbb{N}$$

- x\lij=1 if incidents at j are responded by a response unit at i
- $y \downarrow i = 1$ if a response unit is stationed at i
- G(N,A): a network of freeways, where N and A are the sets of nodes and links
- i, j: index for nodes $i, j \in N$
- R: available resources

1. Incident Response Management Strategies

Empirical Study

Segments of I-70, I-270 and US 15 in MD

Site Characteristics

- 63 miles
- Radial shape of roads
- Frederick, Howard, and Carroll Counties

Highway Incident Management

- TOC-7
- 3 units
- **Operation Hours:** 5AM – 9PM on weekday
 - Study Period: AM peak $(7AM - 9:30 AM on weekday)_{16}$

Incident Frequency Distribution

Incident frequencies fluctuate over the network!

Model output Analysis

- 1. Assigned station and service coverage for each unit
- Average travel time (minutes)

Model output analysis (cont'd)

3. Total delay (veh-hr)

Incident Management System

2. Prediction Models for Clearance Times

A Model for Estimating Clearance Times

Why do we need such a model?

- * Key input for the incident management system
 - Optimal deployment strategy analysis
 - Detour feasibility analysis
 - Detour optimization analysis
 - Traveler information queue, delay and travel time analysis
- * However, the required clearance time for a reported incident is very difficult to reliably predict in advance.

Challenge to Predict Clearance Times

Skewed shape and distributed in a wide range

CT (mins)	Frequency	Ratio
<=30	3870	65%
30-60	1176	20%
60-90	397	7%
90-120	138	2%
>120	344	6%
total	5925	100%

- Difficult to fit with a continuous or discrete distribution
- Most statistical models cannot perform well
 - They tend to focus on the major classes of the data

However, most studies in the literature applied statistical approaches to develop a model

Literature Review

- 1) Probabili ıliano, In the most literature 1989; Ga d Kachroo, 1999) Using **limited scale data** No validation for models Condition 2) ring, 2000; Boyles et al., 2007) Regression Models (Khattak et al., 1995; Giuliano, 1989; 3) 1007. Ozhavand Kachron 10001 The proposed Model is 4) ✓ tackling heterogeneity in most incident data sets ✓ enhancing prediction accuracies; and 5) ✓ assessing the prediction model's robustness for 6) different data sets
- 7) Unconventional Models (Wang et al., 2005; Wu et al., 2011)

Flowchart to Develop the Proposed Model

Phase 1 - Filter Out Outliers

- PAM: Partitioning Around Medoids (Kaufman and Rousseeuw, 1990)
 - Medoids: most centrally located elements
 - Goal: detecting a group of clusters including a small number of elements

36/6000 incidents are selected as outliers

Flowchart to Develop the Proposed Model

Association Rules (Agrawal et al., 1993)

- Mining explicit relations between clearance time and associated factors in a format of rules.
 - For example,

- Support of an itemset X (supp(X)): the proportion of data entries in the database which include the itemset X
- Confidence of a rule: $conf(X \rightarrow Y) = supp(X \cup Y)/supp(X)$

$$supp(X)=6$$
 $supp(X \cup Y) = 3$ $conf(X \rightarrow Y) = 3/6 = 0.5$

Procedure to Construct the SCAR System

Illustration of the SCAR System

Phase 2 - Model Results

- 44 Classifiers
- **Each** consists of 2 or 3 ARs
- **About 72%** of samples can be explained with SCAR
- * Accuracies for each category of clearance duration

Clearance	Class	# of	Accuracy	
Time	ratio	Classifiers	Train	Test
Short	64.98%	27	87.70%	90.37%
Intermediate	28.95%	13	90.50%	92.51%
Long	6.07%	4	75.86%	79.66%

30 -120 mins

Flowchart to Develop the Proposed Model

To predict CT for incidents that cannot be classified by SCAR

To classify predicted *intermediate CT* into shorter intervals

Phase 3 – Developing Supplemental Models

- A model for data not classified by SCAR
 - <= 30 minutes</p>
 - 30 60 minutes
 - 60 90 minutes
 - 90 120 minutes
 - > 120 minutes
- A model to classify the predicted intermediate clearance times into smaller intervals
 - Intermediate-sub1: 30 60 minutes
 - Intermediate-sub2: 60 90 minutes
 - Intermediate-sub3: 90 120 minutes

Support Vector Machine and Random Forests are applied

MOEs to Evaluate the System's Performance

Contingency Table (c_{ii})

Clearance Duration (minutes)		Observation				
		~ 20	30 –	60 –	90 –	>
		≤ 30	60	90	120	120
Prediction	≤ 30	1068	95	20	3	11
	30 – 60	130	146	50	16	23
	60 – 90	81	96	33	9	5
	90 – 120	13	37	23	9	5
	> 120	8	12	9	8	60

Accuracy

Weights (w_{ij})

Clearance Duration (minutes)		Observation				
		< 20	30 -	60 00	90 –	>
		≤ 30	60	60 - 90	120	120
Estimation/ Prediction	≤ 30	1	0	0	0	0
	30 – 60	0.75	1	0	0	0
	60 – 90	0.5	0.75	1	0	0
	90 – 120	0.25	0.5	0.75	1	0
	> 120	0	0.25	0.5	0.75	1

MOEs to Evaluate the System's Performance

Contingency Table (c_{ii})

Clearance Duration (minutes)		Observation						
		≤ 30	30 –	60 –	90 –	>		
			60	90	120	120		
	≤ 30	1068	95	20	3	11		
	30 – 60	130	146	50	16	23		
Prediction	60 – 90	81	96	33	9	5		
	90 – 120	13	37	23	9	5		
	> 120	8	12	9	8	60		

Weights (w_{ij})

Clearance Duration (minutes)		Observation							
		≤ 30	30 -	60 - 90	90 –	>			
		≥ 30	60	00 - 90	120	120			
Estimation/ Prediction	≤ 30	1	0	0	0	0			
	30 – 60	0.75	1	0	0	0			
	60 – 90	0.5	0.75	1	0	0			
	90 – 120	0.25	0.5	0.75	1	0			
	> 120	0	0.25	0.5	0.75	1			

Acceptability

$$= \sum_{i} \lim_{j \to \infty} \int_{i} w_{ij} * c_{ij} / \sum_{i} \int_{i} v_{i} dv_{i} dv_$$

 w_{ij} : weights for cells (i, j) c_{ij} : number of cases in a cell (i, j)

Overall System Performance

Incident Categories	Clearance Duration (minutes)	Class	Accu	ıracy	Acceptability		
		ratio	Train	Test	Train	Test	
Minor	<= 30	65.0%	80.3%	82.2%	92.0%	93.0%	
Intermediate-sub1	30 – 60	20.0%	38.1%	37.8%	58.0%	62.2%	
Intermediate-sub2	60 – 90	6.6%	35.9%	24.4%	45.0%	40.7%	
Intermediate-sub3	90 – 120	2.4%	46.2%	20.0%	54.8%	33.3%	
Major	120 +	6.0%	57.5%	57.7%	57.5%	57.7%	
Total		100.0%	66.7%	66.8%	79.1%	80.2%	

❖ Better than five comparable models developed using support vector regression, random forests, and multiple linear regression, in terms of accuracy and acceptability

Incident Management System

3. A Detour Decision Support System

Study Background

Most states consider only

- Incident duration > 30 minutes
- Complete road closure

The proposed model:

- ✓ Account for more critical factors
 - Traffic volumes, benefit, cost, safety, travel times, etc.
- ✓ Allow the decision maker to place different weights to different factors, based on the either resource constraints or priority.

The Proposed System Architecture

Simulation-based Analysis

- ❖ To estimate the optimal diversion rate from the freeway mainline to mitigate the congestion at the incident segment
 - Concurrently adjust signal timings at the arterial intersections to best accommodate the detour traffic
 - Multi-objective functions
 - Max total throughput of the freeway corridor
 - Min total time of detour travelers on the detour route
 - Constraints
 - Control for signal timing (min green time)
 - Control diverging traffic (max diverging rate)

The Proposed System Architecture

Decision Criteria on the Second Assessment

Benefit-Cost Ratio

Decision Criteria on the Second Assessment

- Safety and Reliability
 - Impacted area → reduction in secondary incidents
 - Measured by the max queue length
 - A multiple linear regression model based on numerous variables regarding incident, location, heavy vehicle volumes, and traffic volumes (Kim et al. 2013)

Decision Criteria on the Second Assessment

- Accessibility
 - Traffic signals, stop signs and speed limits on the detour route
 - Measured by travel time
- Acceptability
 - Depend on the characteristics of driving populations and timely supply of the real-time traffic information
 - Measured by the anticipated compliance rate (user input)

The Proposed System Architecture

Case Study

Weights for Criteria

- > Benefit-cost ratio: 0.31
- Safety and reliability :0.31
- > Accessibility: 0.18
- > Acceptability: 0.20

Scenario 1

- A Full Road Closure (3/3)
- 60 minute-incident duration
- System Recommendation: **Detour operations are beneficial** (recommended) with 60% confidence.
- # of signals on detour route: 2
- Speed limit on detour route: 50 mph

Scenario 2

- A Full Road Closure (3/3)
- 90 minute-incident duration
- System Recommendation: Detour operations are NOT beneficial (recommended) with 62% confidence.
- # of signals on detour route: 5
- Speed limit on detour route: 40 mph

3. Detour Decision Support System

Comparisons of Decisions by Agency

	Scenario No.	1		2			
Decision Criteria (used by agencies in the literature)	Lane Blockage			Scei	nario No.	1	2
	(# of closed lane(s)/total # of	3/3		optima	l detour flow	0.85	0.54
	lanes)			total travel time (hr)		3,232	10,163
,	Incident Duration (minutes)	60			/ detour avel time (hr)		·
Decisions by Agency	NC DOT-main office	Y		w/o detour		3,617	10,182
	NC DOT-Charlotte	Υ		saved tr	avel time (hr)	386	19
	NJ DOT	Υ		В/С	w/ detour	14.74	0.60
	Oregon DOT	Y		B/C v	v/o detour	0.07	1.68
	NY DOT	Υ		•	eue w/ detour (mile)	1.37	2.24
	FL DOT	N		max	queue w/o our (mile)	1.66	2.59
	ARTIMIS (Ohio/Kentucky) Idaho	Y		travel t	ime (min) via reeway	2.52	2.52
	(Ada County) Wisconsin DOT	Not clear	N	travel t	ime (min) via detour	6.55	7.52
Decision by Proposed System		Y	IV	N			50

The System Flexibility with Relative Importance

Base scenario

15 minutes incident duration with full lane blockage (3/3)

B/C: 0.31

S&R: 0.31

Acces: 0.18

Accep: 0.20

Case A

- Higher weights on B/C and safety and reliability
- Detour operations are recommended with 58% confidence.

B/C: 0.18

S&R: 0.20

Acces: 0.31

Accep: 0.31

Case B

- Higher weights on accessibility and acceptability
- Detour operations are Not recommended with 53% confidence.

B/C: 0.25

S&R: 0.25

Acces: 0.25

Accep: 0.25

Case C

- Equal weights on all factors
- Detour operations are recommended with 53% confidence.

Contributions, Future Research, and Conclusions

Contributions

- Empirically investigated the effectiveness of a welloperated incident response program
 - An efficient response operation can also reduce the incident clearance duration and produce significant benefits.
- ❖ Developed an efficient model for optimally allocating the available response units from a new perspective of minimizing the total incident-induced delay
 - The developed model's performance and robustness have been confirmed from the extensive numerical results and the comparative study with the existing models and the current practice in Maryland

Contributions (cont'd)

- Developed an integrated system to provide a reliable prediction of the clearance duration for a detected incident.
 - Incident clearance duration is one of the essential parameters for estimating the resulting traffic impacts and assessing the operational efficiency
- Provided some insightful information on the interrelationships between key factors contributed to incident duration and their collective impacts on clearance times
 - Would be useful for traffic agencies to plan and improve their incident management programs.

Contributions (cont'd)

- Provided operational guidelines and tools for responsible agencies to conduct their assessment of traffic diversion plans as well as design of control strategies during the incident management period
- Developed an integrated system that can assess the necessity of traffic detour/diversion based on the comprehensive review of associated factors

Future Research

- Enhancing reliability of the incident response management strategy
 - Considering the likelihood of having multiple incidents over a short time period
 - Taking into account of the stochastic nature of incident patterns
 - Investigating the pros and cons between the dispatching and patrolling strategies for different times of a day under various traffic conditions and incident patterns
 - Studying the optimal fleet size based on the benefit-cost analysis for a given incident distribution, resource constraints, and operational costs

Future Research (cont'd)

- Enhancing computational efficiency for real-time operations of the detour decision support system
 - To supplement or replace simulation- or optimizationbased models
 - To generate key traffic control parameters such as optimal diversion rate and reduced total travel time by detour operations.

Conclusions

- My field experimental analysis has confirmed the need to contend daily non-recurrent congestion with an efficient and effective incident management program.
 - An efficient incident management needs to optimal use available resources, and best coordinate all responsible agencies.

Conclusions (cont'd)

- This study enhanced the efficiency and effectiveness of the current traffic incident management system in Maryland by developing more reliable models embedded in the system.
 - An incident management system with the proposed key models, incident detection, and detour optimization tools can substantially reduce the delay, fuel consumption, and emission caused by incidents.
 - Such a system, if properly integrated with travel time information system, can substantially improve the quality and efficiency of commuters over congested highways.

Thank You Q & A