Research Update Bus Speed Control System

Hyeonmi Kim

INTRODUCTION

Objective

 Develop a bus speed control system so as to minimize bus headway variance

Decision Outcome

Advisory bus speed to the next bus stop

Bus Speed Control Environment

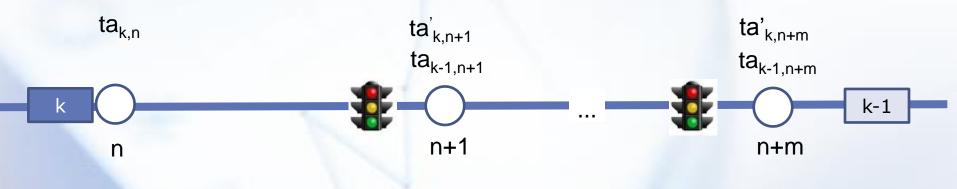
Bus Speed Control Condition:

- Frequent bus service
- Far-side bus stops
- Pre-timed signal control

Given Information:

- Individual bus information
- Traffic information
- Signal information

Bus Speed Control Environment


Assumptions

- Travel speeds of general traffic between stops and passenger arrival rates at each stop are assumed known and fixed for the period of interest.
- Signal timing plans for each intersection between stops are pre-timed and fixed for the period of interest.
- Each stop has a dwell time function depending on the number of passengers boarding.
- Buses obey advisory running speed.
- Vehicles at intersections are fully discharged in every cycle.
- Bus stops are located in the far-side.

Rolling Horizon Approach

 Whenever a bus(k) arrives at the bus stop(n), the system provides the adjusted speed to the next stop so as to reduce headway variance up to the bus stop(n+m) that the preceding bus(k-1) just left in a way to improve fuel efficiency.

 $ta_{k,n}$: Actual arrival time of bus k at stop n $ta'_{k,n}$: Estimated arrival time of bus k at stop n

) I

Bus stop

Bus

Bi-Level bus speed control :

- Determine how many cycles the bus waits to pass the nth signal so as to reduce headway variance
- Determine a bus advisory speed to enhance fuel efficiency with the reduced signal stopped delay

Notation

- k: bus index, k=1,...,K
- n: bus stop index, n=1,...,N
- i: driving mode index (i=1:stop, 2: cruise, and 3:accelation)
- e_k : stop immediately upstream from bus k, if bus k is in stop n then $e_k = n$
- ta_{kn} : actual arrival time of bus k at stop n
- ta'_{kn} : estimated arrival time of bus k at stop n
- t_{kn}' : estimated arrival time of bus k at traffic signal between stops n and n+1
- o_n: offset of the signal between stops n and n+1
- m: previous cycle index at the current time (current cycle index: m+1)
- C: cycle length (seconds)
- τ_n : travel time from the signal to stop n+1 (seconds)
- f'_{kn} : estimated dwell time of bus k at stop n (seconds)
- b'_{kn} : estimated number of passengers who board bus k at stop n
- t_b: passenger boarding time (seconds per passenger)
- t₀: door opening/closing time (seconds)
- v_n: traffic speed between stop n and n+1
- λ_n : vehicle arrival rate at the signal between stops n and n+1 (vehicles per hour)
- $P\lambda_n$: passenger arrival rate at stop n(passengers per minute)

Notation

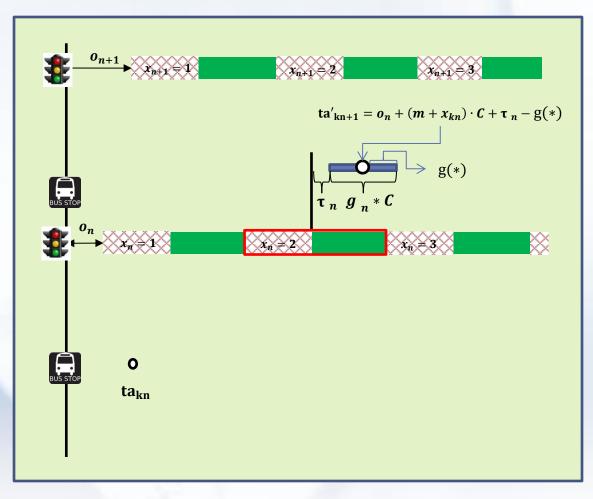
- E: total fuel consumption (liter)
- FR_i: fuel consumption rate (liter per second) of driving mode i
- TVSP_i: trip time spend in driving mode i (seconds)
- VSP_i: vehicle specific power in driving mode i (m^2/s^3)
- a: acceleration rate (m/s²)
- sd_{kn} : signal delay of bus k at the signal between stops n and n+1 (seconds)
- d_n: distance between stops n and n+1 (mile)
- ds_n: distance between stop n and the traffic signal (mile)
- *s*: saturation flow rate (vehicle per hour)
- tr_{kn} : start time of targeting cycle of bus k at the traffic signal between stops n and n+1
- R_n : red interval of the traffic signal between stops n and n+1
- g_n: green time ratio of nth signal
- v_{kn}^{LB} : lower bound of bus advisory speed (mile per hour)
- v_{kn}^{UB} : upper bound of bus advisory speed (mile per hour)
- t0: estimated departure time
- t1: start time of target cycle
- t2: time that all queue is discharged
- t3: end time of target cycle
- *u*: unit conversion factor
- L: vehicle length (mile)
- v_{kn}: advisory bus speed (mile per hour)

Upper Level

 Determine how many cycles the bus waits to pass the nth signal so as to reduce headway difference

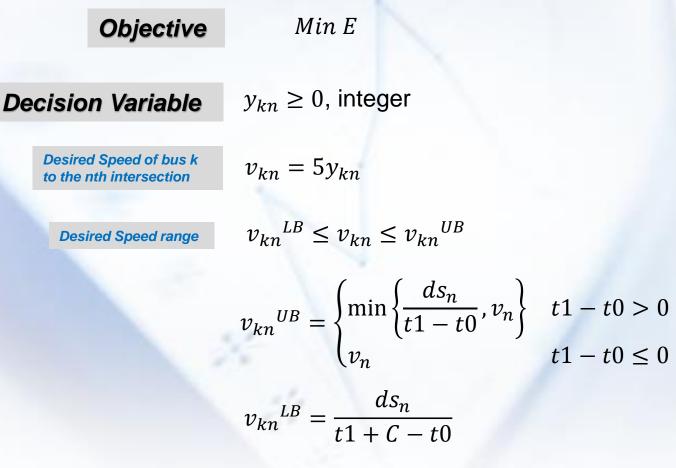
Objective

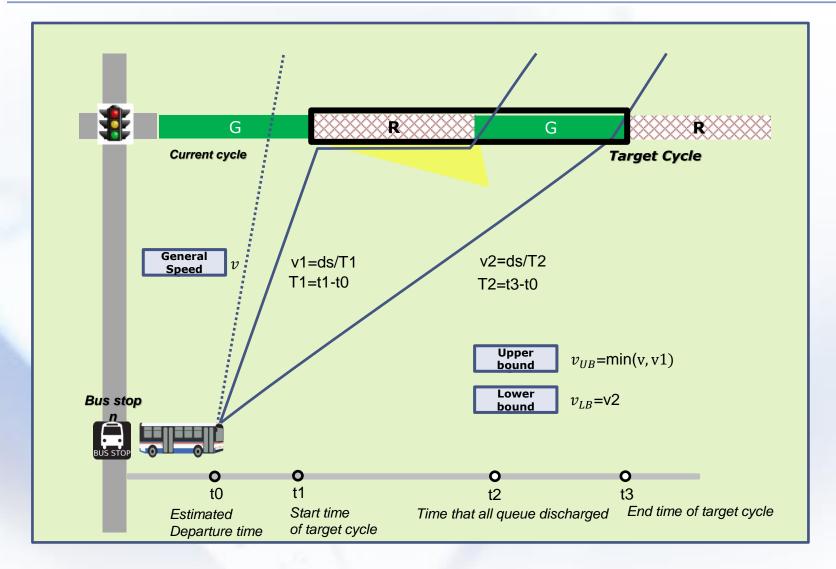
 $Min \sum_{k=1}^{e_{k-1}} (ta_{k-1n} - ta'_{kn})^2$ $n=e_{\nu}+1$ $ta'_{kn+1} = ta'_{kn} + f'_{kn} + \frac{ds_n}{v_n}$ $ta'_{kn+1} = o_n + (m + x_{kn}) * C + \tau_n - g(*)$ $o_n + (m + x_{kn}) * C \le ta'_{kn} + f'_{kn} + \frac{ds_n}{v_n}$ $ta'_{kn} + f'_{kn} + \frac{ds_n}{n} \le o_n + (m + x_{kn} + 1) * C$ $f'_{kn} = b'_{kn} \cdot t_b + t_0$ $b'_{kn} = P\lambda_n \cdot (ta'_{kn} - ta_{k-1n})$ $1 \leq x_{kn} \leq M$


Decision Variable

 $x_{kn} \geq 0$, integer

How many cycles the bus k waits to pass the nth signal


 Determine how many cycles the bus waits to pass the nth signal so as to reduce headway difference


Lower Level

 Determine the bus desired speed so as to minimize the fuel consumption while satisfying the upper level decision

Lower Level

Lower Level

Fuel consumption rate(l/s) for driving mode i

3

Total Fuel consumption

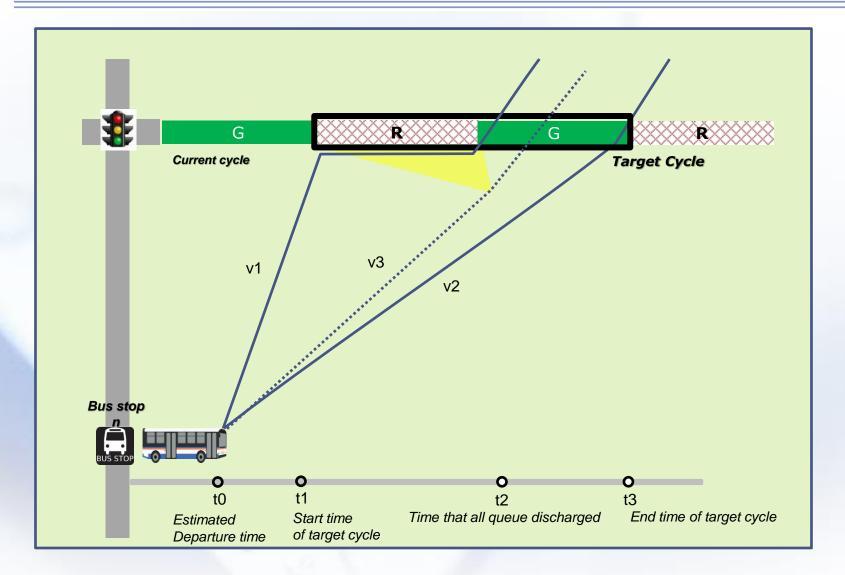
 $E = \sum_{i=1}^{S} FR_i \times TVSP_i$ Trip time spend(s) in driving mode i

For i=1:stop, 2: cruise, and 3:accelation

$$\begin{array}{ccc} & 0 & i = 1 \\ (v_{kn} \times u) \times 0.092 + 0.00021 \times (v_{kn} \times u)^3 & i = 2 \\ (v_{kn} \times u) \times (a + 0.092) + 0.00021 \times (v_{kn} \times u)^3 & i = 3 \end{array}$$

Trip time spend in driving
mode i
$$TVSP_i = \begin{cases} sd_{kn} & i = 1\\ \frac{d_n}{v_{kn}} & i = 2\\ \frac{v_{kn}}{a} & i = 3 \end{cases}$$

$VSP = v \times (a + g \times \sin(\varphi) + 0.092) + 0.00021 \times v^3$


where VSP is the Vehicle Specific Power (m^2/s^3) ; v is instantaneous speed at which the vehicle is traveling (m/s); a is instantaneous acceleration of the vehicle (m/s^2) ; φ is instantaneous road grade (decimal fraction); 0.092 is rolling resistance term coefficient; and 0.00021 is the drag term coefficient.

VSP mode	VSP range (m ² /s ³)	VSP mode	VSP range (m ² /s ³)
1	$VSP \leqslant 0$	5	$6 \leqslant VSP < 8$
2	0 < VSP < 2	6	$8 \leq VSP \leq 10$
3	$2 \leqslant VSP < 4$	7	$10 \leqslant VSP < 13$
4	$4 \leqslant VSP \leq 6$	8	$VSP \ge 13$

Definition of Vehicle Specific Power (VSP) modes

* H. Christopher Frey at al(2007).Comparing real-world fuel consumption for diesel- and hydrogen-fueled transit buses and implication for emissions, Transportation Research Part D, 12

University of Maryland

Signal delay
$$sd_{kn} = \begin{cases} 0 & v_{kn} < v_3 \\ [tr_{kn} + R_n - t_{kn}'] + [(t_{kn}' - tr_{kn}) \cdot \lambda_n \cdot \frac{1}{s}] & v_{kn} > v_3 \end{cases}$$
Waiting time to GREEN startQueue discharging TimeDistance to the intersection $ds_n = \begin{cases} (t_{kn}' - (ta_{kn} + f'_{kn}))/3600 \cdot v_{kn} & v_{kn} < v_3 \\ (t_{kn}' - (ta_{kn} + f'_{kn}))/3600 \cdot v_{kn} + (t_{kn}' - tr_{kn})/3600 \cdot \lambda_n \cdot L & v_{kn} > v_3 \end{cases}$ Travel distance of the busQueue length

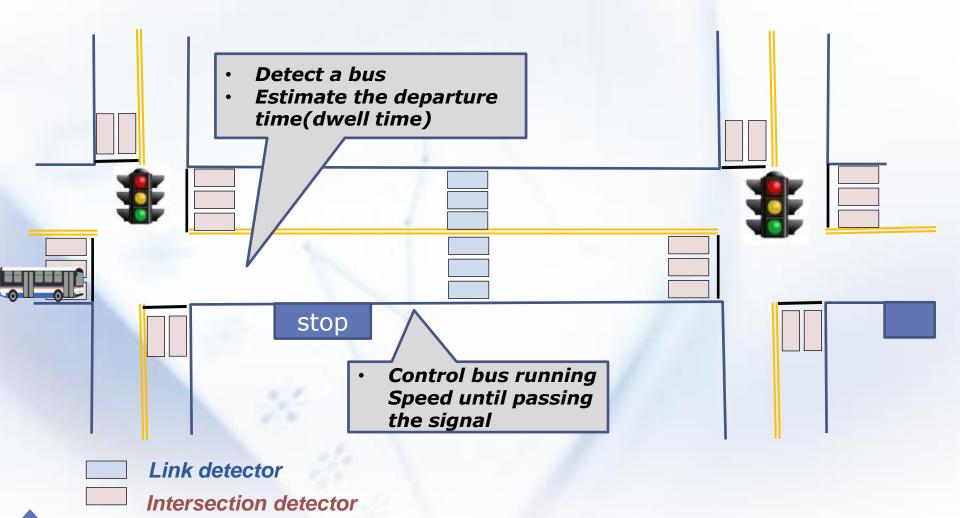
 $f'_{kn} = b'_{kn} \cdot \tau_b + \tau_0$ boarding time + door open/close time

PAX arrival rate * bus headway

 $b'_{kn} = P\lambda_n \cdot (ta'_{kn} - ta_{k-1n})$

16

Estimated dwell time of


boarding bus k at stop n

bus k at stop n

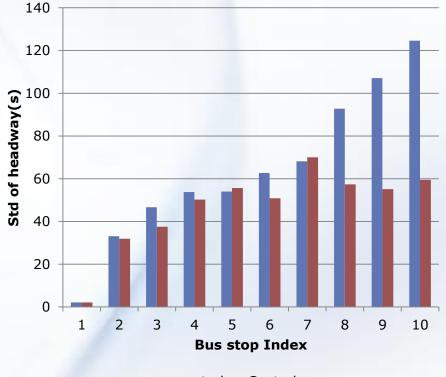
Estimated # of pax


Bus speed control in VISSIM

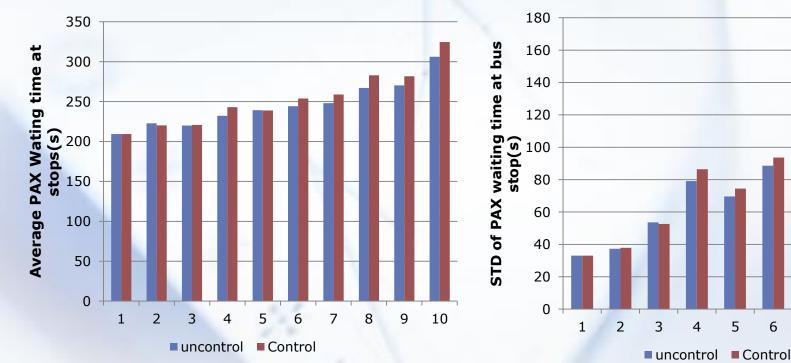
Simulation Environment

- A segment of MD 586 WB from Randolph Rd. to Twinbrook Pkwy (3.3 mile)
- 10 bus stops and 6 traffic signals
- AM peak, Headway of 7 min, v/C of about 0.5

Source of Signal Phase plan, Traffic count, Traffic pattern: I-TMS, MSHA


Source of Transit information: Washington Metropolitan Area Transit Authority

- Average Headway at each bus stop & Standard deviation of headway at each bus stop
 - Mean(s)



uncontrol Control

PAX Waiting Time for a bus at each bus stop *

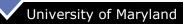
Mean(s)

Standard Deviation(s)

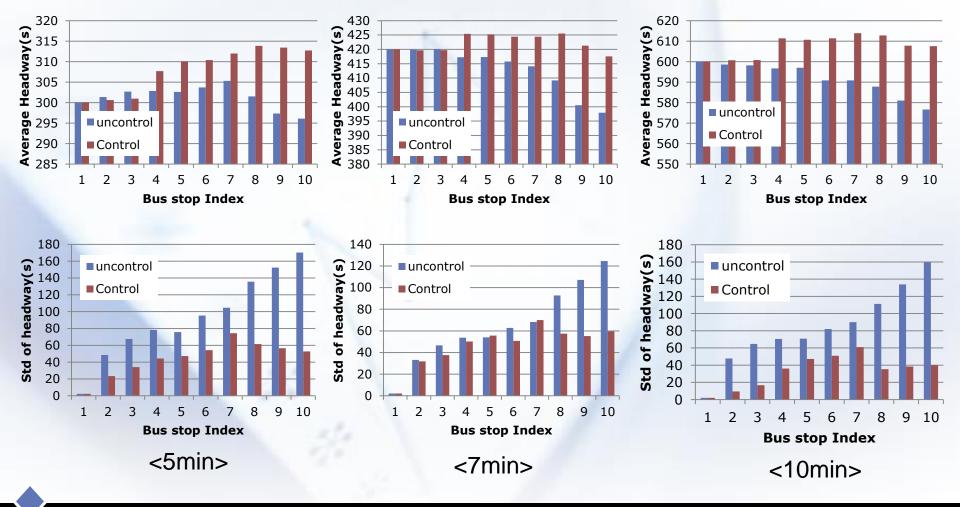
9

8

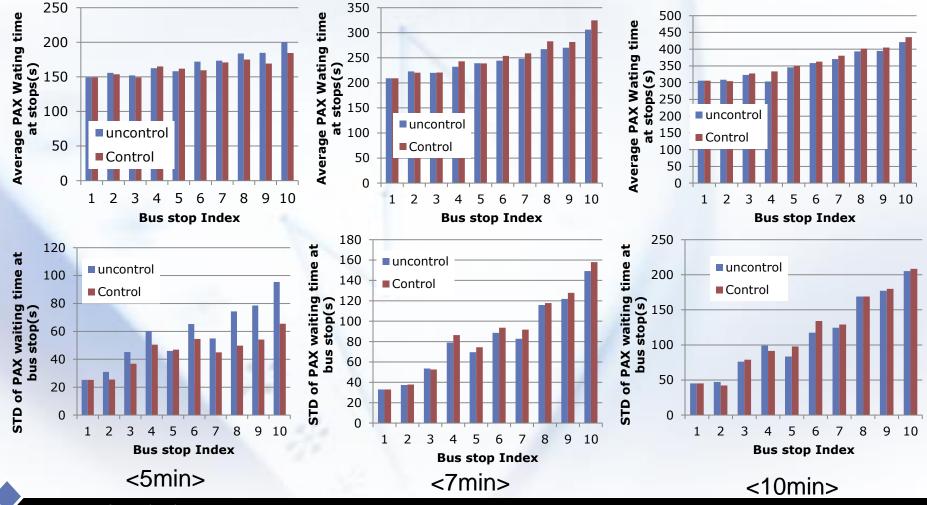
6


7

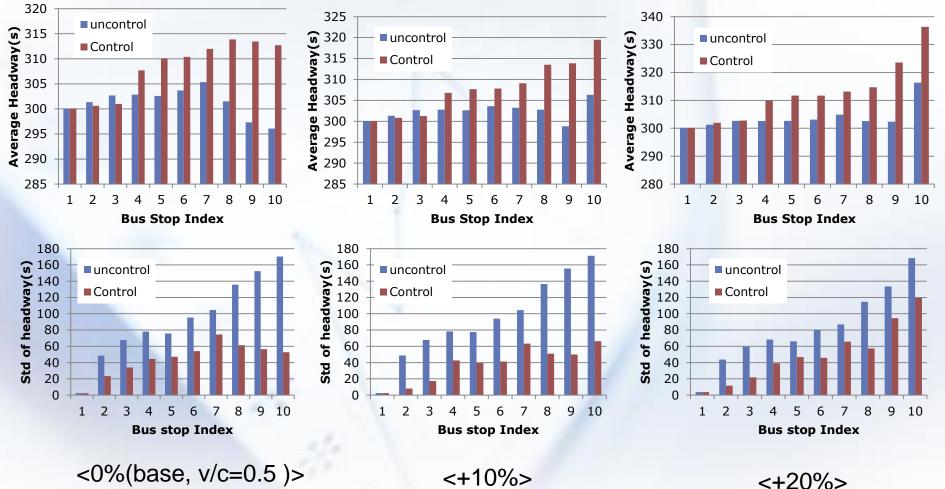
10


Sensitivity Analysis

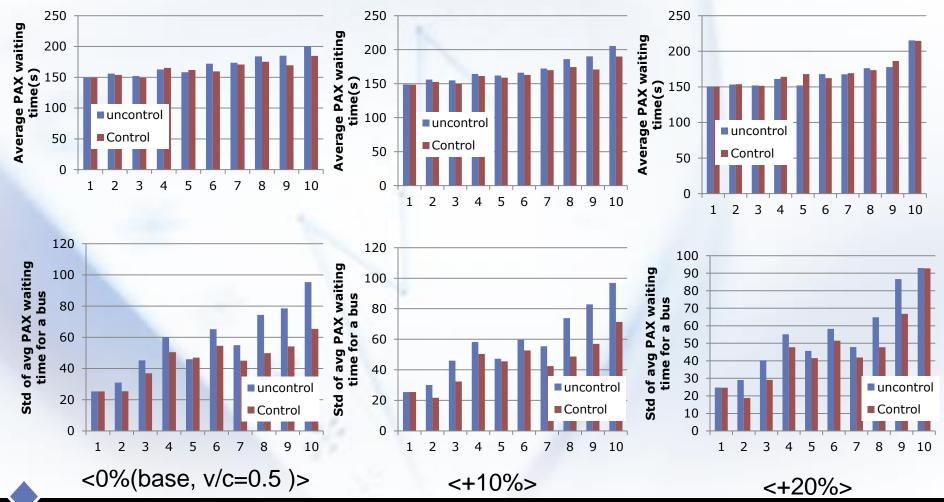
- Bus service frequency
 - 5, 7, and 10 mins
- Traffic Condition
 - 0, +10%, and +20%


Mean and Std. of Headways of Buses by Headway

University of Maryland



Mean and Std. of average PAX Waiting time by Headway


University of Maryland

Mean and Std. of Headways of Buses by Traffic Volume

Mean and Std. of average PAX Waiting time by Traffic Volume

