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Abstract  

This study presents a new approach for estimating travel time information along freeway 
corridors, which experience recurrent congestions but have only a limited number of available detectors 
due to budget constraints. The proposed iterative estimation procedure, based on a set of empirically 
calibrated regression models, intends to rebuild the relations between travel times and accumulated flows 
within each segment of the target freeway corridor. To evaluate the effectiveness of the proposed 
methodology, this study has conducted extensive numerical experiments with simulated data from a 
CORSIM simulator. Experimental results under various traffic volume levels have revealed that the 
proposed method offers a promising property for use in travel time estimation based on sparsely 
distributed sensors.  
 
Research Background 

As a direct indicator of network congestion level, travel time information plays an important role 
in travelers’ route and departure time choices. This research project aims to build an online travel time 
prediction system for I-70, one of the major commuting corridors in the Baltimore region. In reviewing 
travel time prediction methodologies (Rilett and Park, 1999; Chien and Chen, 2001; Chien and 
Kuchipudi, 2003), it is clear that most of those in the literature need extensive and reliable historical 
travel time data. The limited number of travel time samples available in this project can hardly meet such 
requirements, which has necessitated an effective travel time estimation approach. 
 

 
 
 
 
 
 

Figure 1. Illustration of the Study Area 
 
Most existing travel time estimation methods in the literature can be classified into three categories. The 
first category provides the estimated travel time by comparing traffic measurements from up/downstream 
detectors, such as recognizing platoons, employing the flow conservation law, checking flow correlations, 
or building the regression relations between up/downstream flows (Kuhne and Immes, 1993; Nam and 
Drew, 1996; Dailey, 1993; Petty, etc., 1998). The second category uses point speed, either measured or 
estimated from detector data, to generate a section wide speed for computing the travel time (Smith, etc., 
2004; coifman, 2002; Lindveld, etc., 2000; Van Lint and Van der Zijpp, 2002). The last category tries to 
reconstruct the relations between travel time and detected flow, speed, occupancy data with macroscopic 
flow equations or other models (Oh, etc., 2003; Sisiopiku, etc., 1994).  
 
The I-70 segment under study experiences heavy congestions during morning/evening peak hours, which 
has excluded the first category of estimation approaches for this project. Due to budget constraints, the 
study area of more than 20 miles is only covered with 10 roadside detectors. Speed-based approaches 
cannot provide reliable travel time estimates under such long detector spacing (usually half-mile or 500m 
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in literature) (Liu, etc. 2005). Thus, this study will follow the direction of the third category and try to 
rebuild the relations between travel times and detector measurements with a set of regression models and 
an iterative estimation algorithm.  
 
The rest of the paper is organized as follows. Next section analyzes Type I freeway segments with 
permanent downstream bottlenecks and tests two different regression models. Similarly, Section 3 
discusses Type II freeway segments with temporary downstream bottlenecks such as queue spillbacks, 
and proposes the regression model as well as the iterative estimation procedures. Some operational issues 
such as effects of the sample size are discussed in Section 4. Concluding comments constitute the core of 
the last section. 
 
Type I Segments with permanent downstream bottlenecks 

Since travel time of a vehicle between two points is a segment-based parameter, the authors 
intend to select segment-related parameters as explanatory variables for rebuilding the relationship 
between travel time and detector measurements. Unfortunately, the flow/speed/occupancy data directly 
from detectors are only for a single point. Thus, an alternative is to use the number of vehicles within the 
segment as the regressor, since it is the simplest segment-related parameter obtainable from detector 
measurements.  
 
On Type I segment whose congestion is due to a permanent downstream bottleneck (Figure 2), the 
relationship between travel time and the number of vehicles within the segment can be shown with 
Equation (1) if vehicles are assumed to follow the First-In-First-Out rule. 
 
 
 

Figure 2. Type I Segment 
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Here, )(ktt  is the travel time of vehicles departed at time k ; ft  is the free flow travel time; n  is the 
number of vehicles on the segment at time zero; C  is the capacity of the downstream bottleneck; )(kaf  
is the accumulated number of vehicles at time k . Assuming that the flow measurements at upstream and 
downstream detectors at time k  are )(kfu  and )(kfd , one has 
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Equation (1) can be rewritten as a two-segment expression as in Equation (3). Thus one has to fit a 
segmented curve and estimate the join point nftC −× . 
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Based on several related studies in the literature (Quandt, 1958; Hudson, 1966; Kim, etc., 2000), this 
paper employs Hudson’s approach to find the Least Squares (LS) solution. For two submodels );( 11 βxf  
and );( 22 βxf  joined together at ax = , the LS solution includes vectors 11 β̂β = , 22 β̂β =  and real values 

aa ˆ= , II ˆ= , which minimize the Residual Sum of Squares (RSS):  
2
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The fitting procedures are stated below:  

- Step 0: Reorganize the data points by the value of x  
- Step 1: Assume 1ˆ +<< ii xax  for some i . For all 33, −≤≤ nII  and 1+≠ II xx  

Upstream 
Detector Station 

Downstream 
Detector Station 
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o Perform regression on data points },...,{ 1 Ixx  and },...,{ 1 nI xx +  respectively  
o Solve the join point by )ˆ,()ˆ,( 2211 ββ afaf =  
o If 1ˆˆ ˆ

+
<< II xax , compute ),,,( 21 IaRTI ββ= . Otherwise ∞=IT  

- Step 2: Assume ixa =ˆ  for some i . For all 33, −≤≤ nII , 1+≠ II xx  and },{ 1+II xx  does not 
contain a valid â  in Step 1 estimation 

o Perform regression on data points },...,{ 1 Ixx  and },...,{ 1 nI xx +  subject to 
),(),( 2211 ββ II xfxf = . (Plackett, 1960) 

o Compute ),,,( 21 IaRSI ββ= .  
- Step 3: The overall solution is the one that yields the minimal RSS T  or S  

 
To test the reliability of the proposed segmented curve in relating travel time to the accumulated number 
of vehicles, the authors have constructed a highway segment of 9000ft with CORSIM, a microscopic 
simulation package. The three-lane segment is reduced to two lanes at the downstream end. During a 
simulation period of 6.5 hours, the output for analysis includes the upstream/downstream detector 
measurements and average travel time for every thirty seconds. The data from the first three hours are 
used to fit the model. Excluding the initialization period, there are a total of 352 data points. A program is 
written in Visual Basic 5.0 to perform the iterative fitting procedure. The minimal RSS from Step 1 is 
293,001.4, whereas the minimal RSS from step 2 is 293,105.1. The best fitting parameters is as follows  
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Note that among all numerical experiments with modest congestions, the join point ax =  is always much 
smaller than the maximal accumulated number of vehicles. This implies that the first segment of the curve 
is short, which justifies the simplified one-segment model )(*)( 21 kafaaktt +=  under congestions. 
Using the same data set, the estimation result is shown in the following table. 

Table 1. Fitting of the One-Segment Model: Type I Segment 
  Coefficients SE t Stat P-value  R Square 0.987 

Intercept 73.021 3.085 23.667 0.000  Adjusted R Square 0.987 
X 0.872 0.005 162.083 0.000  RSS 311,049.7 

 
Data from the entire simulation period are used to test both calibrated models. The comparison of actual 
and estimated travel times is shown in Figure 3. The figure indicates that both models can well capture 
the change in travel time during the transition and congested periods.  
 
 
 
 
 
 
 
 
 

Figure 3. Comparison of Actual and Estimated Travel Time: Type I Segment 
 

Type II Segments with temporary downstream bottlenecks 
Type I segment with a permanent downstream bottleneck is mainly controlled by the fixed 

downstream capacity. This implies a monotonic relationship between travel time and the accumulated 
number of vehicles within the segment. However, for Type II segment with a temporary downstream 
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bottleneck such as queue spillbacks, the available downstream capacity will vary with time. Thus, a 
vehicle’s travel time depends not only on the accumulated number of vehicles at its departure time, but 
also on the downstream capacity while it traverses the segment. For example, a vehicle entering the 
segment during free flow period may experience longer travel time if the downstream queue starts 
forming during its travel. 
 
The authors propose to use the measurements of either speed or occupancy from the downstream detector 
as the indicator of downstream congestions. This paper selects speed measurements for convenience of 
calibration. The formulation of the proposed model is as follows: 

)(/)()( 21 kavkafaaktt ×+=                (5) 
Here 2,1, =iai  are the model coefficients to be fitted. )(kav  is the average downstream speed during the 
travel of those vehicles departed at time interval k . Assuming the speed measurement at downstream 
detector at time k  is )(kvd , one has )}(,,:)({)( kttkkttvave dkav +== …  
 
To test the proposed model, the authors select a 3829ft segment from the I-70 simulator, which is built 
and empirically calibrated in the microscopic simulation environment CORSIM. The traffic pattern 
indicates that the queue forms and dissipates both from the downstream. During the simulation period of 
four hours, the upstream/downstream detector measurements are obtained from simulation output. The 
average travel time for every thirty seconds is computed by tracing sample vehicles. The first two hours’ 
data, excluding those periods without travel time information, are used to fit the model. The estimation 
result is shown in the following table. 

Table 2. Model Fitting Result: Type II Segment 
  Coefficients SE t Stat P-value  R Square 0.973 

Intercept 43.941 2.329 18.868 0.000  Adjusted R Square 0.973 
X 14.086 0.170 82.858 0.000  Observations 195 

 
Data from the entire simulation period are used to test the calibrated model. Note that since the 
computation of )(kav  involves vehicles’ travel time, it is not known until the travel time is determined. 
Thus, the following iterative estimation procedures are specially designed for such a need.  

- Step 0: For departure time k , set )1()(0 −= kttktt , if )1( −ktt  is available. Otherwise, set )(0 ktt  
to the estimated free flow travel time.  

- Step 1: Compute )}(,,:)({)( 0 kttkkttvavekav d +== …  and )(/)(ˆˆ)( 21 kavkafaaktt ×+=  
- Step 2: If )(ktt  and )(0 ktt  fall in the same interval or the number of iterations has reached its 

upper bound, Stop. Otherwise, set )()(0 kttktt =  and go to Step 1. 
The comparison of actual and estimated travel times is shown in Figure 4. The data points falling on the 
x-axis imply that there are no sample vehicles departed during the corresponding interval and there is no 
actual travel time information available. The figure indicates that the proposed model can capture the 
change in travel time during the transition and congested periods.  
 
 
 
 
 
 
 
 
 

Figure 4. Comparison of Actual and Estimated Travel Time: Type II Segment 
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Some Operational Issues 
 
Sample size for model calibration  

Due to the limited budget, this research project will not have extensive travel time samples for 
model calibration. Thus, the authors have tested the robustness of the proposed model. With the same 
simulation experiment for Type II segment Table 3 presents the model calibration results with data points 
from intervals of 30 seconds, 300 seconds and 900 seconds. As shown in Figure 5, the fitting results are 
fairly stable even with a very small sample size.  

Table 3. Model Fitting Results with Different Sample Sizes 
30s  Coefficients SE t Stat P-value  R Square 0.984 

Intercept 41.596 0.852 48.799 0.000  Adjusted R Square 0.984 
X 14.234 0.089 159.375 0.000  Observations 408 

300s  Coefficients SE t Stat P-value  R Square 0.988 
Intercept 41.693 2.269 18.373 0.000  Adjusted R Square 0.988 
X 14.246 0.245 58.176 0.000  Observations 42 

900s  Coefficients SE t Stat P-value  R Square 0.999 
Intercept 38.699 1.075 35.999 0.000  Adjusted R Square 0.999 
X 15.412 0.140 110.190 0.000  Observations 14 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Comparison of Actual and Estimated Travel Time with Different Sample Sizes 
 
Detector Location and Measurement Error 

The proposed regression models are site specific. The regression coefficients will depend on 
various geometric features and traffic characteristics, such as the section length, road gradient, lane width 
and vehicle composition. For a given freeway segment, the proposed models use the accumulated number 
of vehicles within the road segment as one major regressor. This number is computed based on the flow 
measurements of the two end detectors. Thus, there should be no on/off ramps between these detectors.   
 
To deal with the potential measurement errors, the accumulated number of vehicles can be recorded for 
several days. For an early morning time interval when the traffic is very low, the accumulated number of 
vehicles should be around a certain value over different days. If an apparent increasing/decreasing trend is 
observed, one can compute the average increase/decrease rate per interval and thus to adjust the 
accumulated number of vehicles. 
 
Conclusions 

This study has proposed two regression-based approaches to estimate travel time information, 
respectively, for freeway segments containing congestions due to permanent or temporary downstream 
bottlenecks. The regression models are designed to rebuild the relations between travel times and 
accumulated flows within each segment. The numerical experiments with simulated data from a CORSIM 
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simulator have demonstrated the potential of the proposed methodology, especially with respect to its 
following features:  

- Reliable estimation results under various traffic volume levels (i.e., free flow and congestion and 
even the transition periods). 

- Robustness in taking full advantages of available travel time samples for calibration. 
- Reliable travel time estimates even under long detector spacing (e.g., 9000ft and 3829ft in the 

numerical study), which can reduce the required number of detectors for travel time estimation. 
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