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ABSTRACT 
As reported in the literature for Intelligent Transportation System (ITS) applications with traffic 
detectors, various missing data patterns are frequently observed in such systems and may 
dramatically degrade their performance. This study presents two imputation approaches for 
contending with the missing data issues in travel time prediction. The first model is based on 
the concept of multiple imputation technique to directly predict the travel times under various 
missing data patterns. The second model that serves as the supplemental component is to 
estimate the missing detector values using neighboring detector data and historical traffic 
patterns. Both models have been incorporated with reliability indicators so as to assess the 
quality of imputed data and its applicability for use in prediction. The numerical example based 
on 10 roadside detectors on I-70 in Maryland has demonstrated that both developed models 
outperformed existing methods and offers the potential for field implementation. 
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INTRODUCTION 
As is well recognized, traffic detectors for freeway monitoring or any Intelligent Transportation 
System (ITS) applications may not function as reliably as expected and often produce various 
patterns of missing data that consequently degrade the quality of control operations. The 
inevitable encountering of the missing data issue has also further complicated the challenging 
travel time prediction task, especially when only sparsely distributed detectors are available for 
collecting real time traffic conditions. In view of the quality of detectors in the existing market 
and their associated communication issues, it seems essential for any potentially deployed ITS 
system to have a function that can be effective in contending with the missing data. 

In most travel time prediction systems, one can attribute most common data missing to 
either data delay or data loss. Most communication errors often contribute to short-term 
missing data, whereas device failures, such as the traffic detector or the data storage device, 
potentially result in a long-term missing data. 

The dataset from 10 detectors illustrated hereafter was taken from the field 
demonstration project of a real-time travel time prediction system with widely spaced detectors 
(2 miles per detector) between February 9th and August 2nd, 2006, which contain various 
commonly seen patterns of missing data. The demonstration project, named Automated Real-
Time Travel Time Prediction System (ARAMPS), is located on a 25-mile stretch of I-70 
eastbound from MD27 to I-695, which includes 7 interchanges and 10 traffic detectors (Fig. 1).  
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Example Long-Term Missing Data 
Long-term missing data, which is defined as data with a missing rate of greater than 10%, has 
occurred quite often at each detector location during the project period of ARAMPS. Table 1 
shows the distribution of the number of days when the daily missing data rate exceeded 10% 
(144 minutes) at each detector during the 116-day period of demonstration from February 9th to 
June 4th, 2006. In 39 days out of the total field demonstration period (i.e., 116 days), the 
ARAMPS prediction system experienced at least one detector that suffered a daily missing data 
rate exceeding 10%. 

Table 1 A summary of missing data distribution by detector during the period 
experiencing more than 10% missing rate  

Detector 1 2 3 4 5 6 7 8 9 10 
Number of Days*1 3 2 2 3 9 8 14 2 11 10 

Average Daily 
Availability (%)*2 30.0 25.5 25.5 57.7 47.6 63.7 73.4 0.0 20.3 26.9 

Total Data Loss 
Duration (Hours) *3 50.4 36.0 36.0 31.2 112.8 69.6 88.8 48.0 211.2 175.2 

*1: Total number of days in which the detector had a missing rate of more than 10% 
*2: Average daily data availability during those days in which the detector had a missing rate of more than 10% 
*3: Total duration of data loss during those days in which the detector had a missing rate of more than 10% 
 
Example Short-Term Missing Data 
Figure 2 illustrates the distribution of timestamps of the traffic data versus the arrival 
timestamps in the database from Detector 5 collected between 14:21 and 15:42 on June 2nd, 
2006. There were several segments of data loss during this period. It clearly shows that the 
order of data recovery was “first missing first recovered” for all 3 short periods of data loss. 
Note that the order of data arrivals may vary with the system setup and configurations. 
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Figure 2 Timestamps of the detected traffic data vs. timestamps of data arrival  
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Example Impacts of the Missing Data on Travel Time Predictions 
To highlight the need of developing an effective imputation model for missing detector data, 
Figure 3 presents the performance of a travel time prediction model under 3 levels of missing 
data from detector 10. In this example, the missing data was imputed with the most widely used 
imputation method, mean substitution (MS) (1), in transportation systems. The resulting 
prediction error over a 12.3-mile segment with 15-minute missing data can be up to 140% of 
the actual trip times that are between 10.7 minutes to 22.5 minutes, and more than 6 times 
higher than the predicted results if without missing data. 
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Figure 3 Absolute relative errors of travel time prediction with data missing  
at Detector 10 on June 20th, 2006 

Hence, it is noticeable that a system for travel time prediction without an effective 
mechanism to deal with missing data may not fit the needs of real-world implementations. To 
contend with such an issue in travel time prediction especially with sparsely distributed 
detectors as in most highway networks, one needs to develop an imputation model that can 
have the following functions: 

• Use site specific geometric features and traffic patterns to maximize its 
performance; 

• Best use of all historical and related information  to ensure the proper function of 
travel time prediction under various missing data scenarios; and 

• Provide a reliability indicator so that the system can determine if the predicted travel 
time should not be displayed to avoid encountering unacceptable errors caused by 
the large mount of missing data. 

This paper will first review available methods for missing data imputation in the 
literature, followed by the developments of two multiple imputation approaches for travel time 
prediction. The performance evaluation of the proposed models along with those in the 
literature using the dataset collected from ARAMPS will contribute the core of Section 4. 
Concluding comments are summarized in the last section.  
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LITERATURE REVIEW 
Over the past few decades, many researchers in different technical fields — including 
econometrics, social sciences, biostatistics and transportation have devoted significant efforts in 
solving the missing data issue. Some early studies in contending with the missing data simply 
employed primitive approaches, such as case deletion and mean substitution (1, 2). Since 1970s, 
more researchers have recognized the complexity of the missing data nature and its impacts on 
the resulting performance of all employed models (1, 3-5). In fact, effective methods for 
dealing with the missing data issue may also vary with its pattern, the target applications, and 
the intended primary methods for prediction (1). 

This study has categorized existing methods for handling the missing data estimation 
into two groups: single imputation, and multiple imputation models. Most recent studies in the 
literature indicated that multiple imputation approaches generally outperform the single-
imputation methods that are widely used due to their convenience of implementation.  
 
Single Imputation Methods 
Most single imputation (SI) methods mainly impute the missing data from the means and 
distributions of the observable dataset. The Mean substitution (MS) is effective for these types 
of studies with emphasis on the mean of the data (1, 6). Hot-deck method (7) typically replaces 
the missing value with an estimation imputed from one or several similar data records using 
certain searching criteria. The expectation-maximization (EM) algorithm (1, 4) is an iterative 
estimation method that focuses on both the mean and the variance. The potential deficiency of 
such methods lies in the exercise of only one imputation that may not take full advantage of all 
available information embedded in the dataset.  
 
Multiple Imputation Methods 
In view of the deficiencies of most single imputation methods, some researchers have 
developed the Multiple Imputation (MI) techniques that aim to improve the imputation quality 
by incorporating the uncertainty of the missing data (1, 5). The core logic of multiple 
imputation methods is to estimate the same missing value m times (m > 1) with a simulated 
process (e.g., a Markov chain Monte Carlo simulation) to generate m complete datasets, and 
then analyzes the mean and variance of the estimators in these datasets to produce the final 
estimate. More specifically, let ),( YXQQ = be denoted as the quality of the imputation, where 
X is the set of complete variables and Y contains the variables with missing data, the posterior 
distribution of misY  can then be determined by Eq. 1 (5): 

),,|Pr( RYXQ obs         (1) 
where misY  is missing values; 
  R  is a N×p matrix with binary values indicating missing of Y; and 
  ),( misobs YYY =  

Rubin (5) showed that Eq. 2 and Eq. 3 can properly estimate the mean, Q̂ , and the 
variance, U, of the posterior distribution of completed data. Therefore, the simulation procedure 
incorporated in the multiple imputation framework is valid to estimate the posterior mean and 
variance of the missing values. 
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),,,|(ˆ RYYXQEQ misobs=        (2) 
),,,|( RYYXQVU misobs=        (3) 

MI has been widely applied to the social sciences (8), biostatistics (9, 10), and 
transportation, and reported to generally outperform the single imputation methods in most data 
missing scenarios. Another advantage of the MI methods is their ability to evaluate the variance 
of the final imputed value. 
 
Applications of the Data Imputation Methods in the Transportation Study 
The use of missing data techniques has received an increasing attention in transportation over 
the past decade. Several methods for missing data treatment have already been widely used by 
practitioners and researchers in transportation applications. These methods include conditional 
mean substitution, regression models (such as interpolation), and time-series models (11). 
These transportation studies have focused mainly on replacing the missing values (flow, 
occupancy and/or speed) with imputed values so as to construct a complete set of traffic data 
(11-19). Most of these studies applied single imputation techniques, and only a few employed 
the multiple imputation methods (19). Some research also proposed the use of advanced 
prediction models, such as ARIMA, local weighted regression, and Neural Network models for 
missing data estimation in order to capture the temporal and spatial distributions of the detector 
data (15, 16). However, as reported in the literature, much remains to be done in terms of 
developing generalized and effective methods for imputing missing detector data. 

 

NEW IMPUTATION APPROACHES FOR TRAVEL TIME 
PREDICTION 
Grounded on the existing theories for missing data estimation, this study proposes two multiple 
imputation models, named M-1 and M-2, to supplement a real-time travel time prediction 
systems developed for use in a sparsely-distributed detection environment (20). The key feature 
of Model M-1 is to integrate the missing data imputation with the travel time prediction, and 
directly estimate the missing travel time with available information. In contrast, Model M-2 is 
focused on restoring the missing detector data used by the prediction models over the target 
highway segment. 
 
Model M-1: An Integrated Model for Travel Time Prediction under Missing Data 
As seen in the literature, it is difficult to measure the reliability of the predicted travel times 
under the missing-data impacts. The integrated imputation approach (Model M-1) developed in 
this study views the travel time to be predicted during the data missing interval as a missing 
variable. Therefore, one can apply the core logic of existing multiple-imputation techniques but 
with some enhancements to estimate both the missing traffic data from detectors and the travel 
times from historical travel times. Eq. 5 describes these relations in the proposed M-1 Model.  

))(),(()( . ttYtY tde
mismis τ=        (5) 

where )(. tY tde
mis  is the missing detector data at time t; and 

 )(tτ  is the travel time to be predicted at time t. 
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Determining Posterior Distribution 

Same as those in the literature, one of the most critical tasks for implementing the model M-1 is 
to properly estimate the posterior distribution of the missing variables from their observed 
values. To do so, this study has carefully studied the dynamic nature of the detector data and 
their complex interactions with travel times. This is due to the fact that some variables do not 
directly contribute to the prediction of the travel time, excessive inclusion of such information 
may actually degrade the estimation results. For example, as shown in Figure 4, volume 
distributions varied significantly between two through lanes, due to drivers’ knowledge of 
potential congestion on the right through lane caused by the daily queue spillback from the off-
ramp to US29 southbound and/or the presence of queue on the off-ramp which blocks the usage 
of the right through lane at the detector location. 
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Figure 4 Average vehicle counts in 5-minute intervals on four Thursdays in July, 2006  
at Exit 87A on I-70 (Detector 7) 

To eliminate the impacts of unstable variables that do not contribute to the travel times 
for through traffic, the proposed imputation approach will first identify the critical lanes for 
through vehicles under various congestion patterns based on the following procedures: 

• Categorize traffic scenarios based on the distributions of congestion patterns. In most 
cases, congestions can be categorized into morning peak, evening peak and off-peak 
hours. However, other traffic scenarios with different patterns may exist at the same 
locations and may result in selection of different critical lanes which are used by most 
through vehicles.  

• Conduct field observations of congestion patterns so as to determine the critical lanes, 
which may include both the mainline and ramp lanes, for each scenario p. 
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• In the presentation hereafter, let )( pdCLT  be defined as the set of all critical through 
lanes at Detector d, which significantly contribute to computing of the average through 
traffic condition under scenario p, and )( pdCLR  as the critical ramp lanes at Detector d 
under the same scenario. 

To better identify the posterior distribution of the missing data, this study has 
incorporated an enhanced k-Nearest Neighbor model (20) to search for similar historical cases. 
To take into account the traffic characteristics, one shall first categorizes traffic conditions with 
detected occupancy information, and then use the following equations to define the traffic 
conditions of free-flow, heavy congestion, and moderate congestion. 

⎪
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Where  ),( tttTC al
d ∆+  is the traffic type in lane la at detector d from time t to t+∆t, 

 ),( ttto al
d ∆+  is the average occupancy in lane la at detector d from time t to 

t+∆t, and, 
 al

dOF  and al
dOC  are the upper bound of free-flow occupancy and lower bound 

of heavy congestion occupancy, respectively, for lane la at detector d. 

The searching model then defines the distance, dis, between the current case and the 
candidate historical case as following: 
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 pi is the value of the ith variable in the historical record; 
qi is the value of the ith variable in the current state; 

 t  and ht  are the time of day of the current case and the historical case 
respectively; and 

 wi is the nonuniform weighting factor. 

Operational Procedures 

Using the geometric features and traffic patterns detected from the critical lanes on the target 
segment and the traffic characteristics accounted by the enhanced search model, One can 
exercise the integrated multiple imputation model (M-1) with the following steps.  
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Step 1: Construct a dataset with the information from critical lanes that do not encounter 
missing data at current time t. The dataset shall also include data prior to the current 
time t from each critical lane. 

Step 2: Search for h complete historical cases that have traffic conditions most similar to the 
critical lanes at the current time. If historical cases are not adequate, the model will 
report that no reliable prediction can be made under the current missing patterns. 

Step 3: Set imputation index i=1. 

Step 4: Construct a set of complete variables ( COMVAR ) in critical lanes in all h complete 
historical data records. 

Step 5: Determine the probability distribution of missing variables, given the available 
complete data records )|( COMMIS VARVARp . 

Step 6: Impute all missing values and the travel time prediction based on )|( COMMIS VARVARp . 

Step 7: Integrate the newly obtained values from Step 6 with COMVAR  to form COMRVA ′ . 

Step 8: Test if the ith imputation converge based on the differences in both the mean and the 
variance between )|( COMMIS VARVARp  and )|( COMMIS RVAVARp ′ . If it converges, 
then go to Step 9. Otherwise, let COMCOM RVAVAR ′= , and then go to 6. 

Step 9: Record the imputation results, then let i=i+1. If i ≤ m, go to Step 5. 

Step 10: Determine the mean and variance of each variable in the m imputed data records. If all 
estimated variances are less than the assigned thresholds, then Model M-1 will output 
the average value of m imputed travel times as a reliable prediction under the current 
missing data pattern. Otherwise, the model will inform the system that no reliable 
result can be produced. 

Note that one can execute the above procedures m times to generate a set of m imputed 
values. Prior to implementing the model, it is essential to determine four important parameters: 
the number of imputations m, the number of similar historical cases h, the criteria to determine 
the convergence of each imputation, and the location- and time-dependent thresholds of the 
variances of missing values. The convergence criteria and thresholds are available from the 
literature (1, 5). The former are usually defined as a penalty term that equals the covariance of 
two imputed values, given the non-missing data and the estimated covariance matrix. 
 
Model M-2: Multiple Imputation of the Missing Detector Data 
In addition to the integrated multiple imputation model, this study also develops a traditional 
multiple imputation model that imputes the missing values only for the scenarios in which 
similar historical cases are insufficient for Model M-1 to perform a reliable prediction. Under 
the same framework, this model groups related variables into one set of search indicators to 
generate imputations from similar cases. Model M-2 only takes into account traffic patterns in 
critical lanes in the same identified subsegment where the detector is experienced the missing 
data. 
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To capture the lane-varying traffic conditions, the proposed Model M-2 needs to divide 
the target freeway segment into several sub-segments based on the following criteria: 

Step 1: Identify traffic scenarios based on the recurrent congestion patterns, and then perform 
the following steps for each traffic scenario. 

Step 2: Group adjacent detectors into one subsegment if there are no ramps between the 
detectors. 

Step 3: Combine adjacent subsegments if the detector at the interface point has a very low 
volume in the current traffic scenario and all ramps in the newly combined 
subsegment are covered by detector stations. 

Step 4: Repeat Step 3 until no further combination is possible. 

With the predefined subsegments for the current traffic scenario, one can further apply 
the following step-by-step procedures to estimate the missing values: 

Step 1: Divide all observed missing values into groups based on their locations in the 
predefined subsegments for the current traffic scenario. 

Step 2: Search for h similar historical cases with complete data in the target subsegment. If 
historical cases are not adequate, the model will report that no reliable imputation can 
be done for this group of missing data. 

Step 3: Set the imputation index i=1. 

Step 4: Construct COMVAR  with variables in the critical lanes within the subsegment from 
those h historical cases. 

Step 5: Go through the same Steps 5 to 10 for Model M-1 to generate the final imputation 
results for the target subsegment. 

Step 6: Repeat Steps 2 to Step 5 for all subsegments that experience missing data. 

The system will then replace the missing detector data with the imputed results, and 
construct a complete input dataset for use by the travel time prediction model. By taking into 
account the geometric features and traffic congestion patterns, Model M-2 can supplement 
Model M-1 when a direct estimate of travel time is not available. 
 
System Flowchart 
Figure 5 illustrates the framework of the proposed system, which combines two missing data 
imputation models: Model M-1 and Model M-2. When the system detects that some data 
missing incurs in the input dataset for prediction during real-time operations, it will first apply 
Model M-1 to directly impute the travel time )(1 tTTM . If the variance of the imputed result 
from Model M-1 is larger than the time-dependent threshold )(1 tTH M , the system will then 
switch to Model M-2 to impute the missing values (traffic flow and/or occupancy by lane) in 
the input dataset. The system will execute the models for travel time prediction if the imputed 
detector values are reliable when compared with the time- and location-dependent flow 
threshold, ),,(2 tladTH v

M , and/or the occupancy threshold, ),,(2 tladTH o
M . Otherwise, the 

system will stop the prediction for the target segment. 
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Figure 5 Flowchart of the system flowchart 
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NUMERICAL EXAMPLES 
This section presents some numerical evaluation results for these two proposed missing data 
imputation models. The target highway used for the evaluation is the subsegment between 
Detector 2 and Detector 10 from ARAMPS, which is about 13.81 miles with a free-flow travel 
time of 694 seconds. The evaluation periods were between 15:00 and 19:00 on four of five 
consecutive weekdays from June 20th, 2006 (Tuesday) to June 26th, 2006 (Monday), excluding 
June 23rd, 2006 (Friday). The numerical examples intend to explore the following two issues: 

• The performance of each imputation model under different missing rates (for detector 
10); and 

• The relation between the number of multiple imputations executed in each proposed 
model and its resulting performance. 

Figure 6 shows the distribution of the estimated travel times between 15:00 to 19:00 on 
these four weekdays. The peak periods of these four experimental days had different starting 
times, but the same ending times. The estimated travel times that are based on the complete set 
of detector information prior to and after the peak period serve as the true values for the 
performance evaluation. The estimation model is from the study by Zou et al. (21). 
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Figure 6 Distributions of Travel Times between 15:00PM and 19:00PM  
over selected experimental 4 days in 2006 

The numerical analysis is focused on comparing the performances of the following five 
types of models for missing data estimation: mean substitution (MS), Bayesian forecast (BF), 
multiple imputation model (Model M-2), and the integrated multiple imputation approach 
(Model M-1). The travel time prediction model developed by Zou et al. (20) is used to generate 
the predicted travel times for MS, BF and M-2. A sensitivity analysis of the performance 
quality with respect to the required number of imputations (m = 5, 10, 20 and 50) for each 
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candidate imputation model has also been conducted. The experimental scenarios for 
evaluation include the data missing rates of 20%, 40%, 60%, and 100% incurred at Detector 10, 
which is a critical detector for both travel time estimation and prediction in all traffic scenarios. 
 
Overall Performance over All Four Days 
Figure 7 shows the distributions of average absolute relative errors (AARE) , as defined in Eq. 
8, with each of those four methods over those four experimental days. In what follows, M-2-m 
and M-1-m denote Model M-2 and Model M-1 with m imputations, respectively. The results 
showed that Model M-1-50 has the best performance, compared to all other models when the 
data is missing at the rate of 20%, 40% and 60%, and its performance is very similar to Model 
M-2-50 when the data is missing at the rate of 100%. Model M-2-50 provided a similar 
performance to MS and BF at the missing rate of 20%, but exhibited better accuracy than all 
other three methods at the missing data rate of 100%. 

∑
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where AAE is the average absolute error, 
 AARE is the average absolute relative error, 
 N is the number of data samples available for comparison, 
 n is the index of the data sample, 
 nτ  is the nth observed travel time, and 
 nτ̂  is the travel time from the model. 
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Figure 7 Average Absolute Relative Errors of All 4 Days under Different Missing Rates 
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Table 2 further compares the performance of all methods in different ranges of travel 
time, which include congestion-free conditions (travel time less than or equal to 700 seconds), 
moderate congestions (travel time between 700 and 900 seconds), and heavily congested 
conditions (travel time exceeds 900 seconds). It is noticeable that Model M-1-50 was the best 
among all models at the missing data rates of 20%, 40% and 60%, while Model M-2-50 
outperformed the other three methods when Detector 10 could not function at all. Model-M1-
50 and Model-M2-50 exhibited the same level of performance at the missing data rate of 100% 
in all three categories. 

 
Table 2 Performance of Four Imputation Models in Different Traffic Conditions  

(Average Absolute Relative Error) 

 

TT: Travel time; MS: Mean substitute; BF: Bayesian forecast 
M-2-50: Model M-2 with the number of imputation m=50 
M-1-50: Model M-1 with the number of imputation m=50 
 

Performance Comparison with Individual Day Data 
This study has further evaluated the performance of each candidate models on a single day to 
evaluate the potential errors due to various congestion patterns. As shown in Figures 8(a) and 
8(b), both MS and BF models, which are widely used in the existing traffic data warehouse 
systems, provided satisfactory results when the missing data rate was less than 40% in the 
evening peak hours, except during the transition periods between moderate and congested 
conditions. However, when the missing rate for Detector 10 was up to 100%, both models 
yielded unacceptable prediction results. Figures 8(c) and 8(d) show the prediction results from 
Model M-1-50 and Model M-2-50 under the same missing rates of 40% and 100% on June 20th, 
2006. It is clear that travel time predictions with these two proposal multiple imputation models 
are more reliable and robust, especially during the transition periods. The integrated model M-
1-50 is much more robust than MS, BF, and MI-2-50; its largest prediction error was less than 
4 minutes (2%) when detector 10 is not functioning at all. Model M-1-50 and Model M-2-50 

TT≤700 MS BF M-2-50 M-1-50 
20% 3.10% 2.78% 3.11% 2.54% 
40% 4.10% 3.63% 3.26% 2.80% 
60% 5.05% 4.47% 3.73% 3.07% 
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100% 8.53% 7.47% 5.42% 6.37% 
      

700<TT≤900 MS BF M-2-50 M-1-50 
20% 8.23% 7.35% 7.43% 6.65% 
40% 8.76% 8.56% 7.29% 6.43% 
60% 9.33% 8.64% 7.71% 6.95% 
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100% 10.48% 10.26% 8.58% 8.66% 
      

TT>900 MS BF M-2-50 M-1-50 
20% 13.46% 12.80% 12.36% 10.96% 
40% 13.82% 15.05% 12.57% 11.86% 
60% 14.29% 15.28% 12.99% 12.76% 
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100% 16.12% 15.86% 13.55% 14.07% 
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have similar average absolute relative errors of 12.15% and 12.06%, respectively, for the travel 
time of around 16 minutes over the entire evening peak on June 20th, 2006, compared to the 
prediction errors of 18.41% and 20.78%, respectively, for MS and BF. 

 
Figure 8 Performance comparisons of four imputation models at missing data rates of 

40% and 100% at Detector 10 on June 20th, 2006 
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a) Mean substitution (MS) 

b) Bayesian forecast (BF) 

c) Model M-2 with m=50 (MI-2-50) 

d) Model M-1 with m=50 (MI-1-50) 
Estimated Travel Times Prediction under No Missing Data
Prediction with Missing Rate of 40% Prediction with Missing Rate of 100% 

MS (Missing Rate: 100%) 

BF (Missing Rate: 100%) 

MI-2-50 (Missing Rate: 100%) 

MI-1-50 (Missing Rate: 100%) 



Wang, Zou and Chang                                                                                                                 16 

 

Sensitivity Analysis for Multiple Imputation Models 
Since both Model M-1-50 and M-2-50 show better accuracy and reliability than other two 
commonly-used models on the data over these sample days, this section will further investigate 
their performance under different numbers of imputation. 

Figures 9(a) to 9(d) illustrate the average absolute relative errors from Model M-1 and 
Model M-2 on all four sample days with different numbers of imputation and different missing 
data rates. As expected, the predicted accuracy of the integrated multiple imputation method, 
Model M-1, varies with the number of imputation being used. Its performance increased more 
than 10% when the number of imputation was changed from 5 to 50. However, an increase in 
the imputation number seems to have less significant impact on the performance of Model M-2 
as shown in Figure 9. Its performance improvements are all less than 3% when m is increased 
from 5 to 50. The results of Model M-2 are consistent with those reported by Little and Rubin 
(1), which suggested that m should be between 3 and 10. 
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c) Missing rate: 60%                                        d) Missing rate: 100% 
 

Figure 9 Average relative errors of models M-1 and M-2 on all four days 
with different m and missing data rates 

 

Because Model M-1 was developed specifically for the proposed travel time prediction 
model, Little and Rubin’s estimation of an efficient m does not fit this model. As shown in 
Figure 9 and Table 3, on average, the prediction error may increase about 5% when m 
decreases from 20 to 10, and increase about 3% when m is reduced from 50 to 20. For a 
prediction error of 4 minutes, an increase of 3% amounts to 7.2 seconds and an increase of 10% 
equals about 24 seconds. Hence, one can determine the number of m based on the required 
accuracy of the application. For example, an increased accuracy of 7 seconds may not be 
critical for the predicted travel times of more than 30 minutes for commuters. 
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Table 3 Performance improvements of Model M-1 under different imputation numbers 

Missing Rate Increase of m 
20% 40% 60% 100% 

From 5 to 10 5.38% 5.32% 5.32% 5.12% 
From 10 to 20 2.60% 2.82% 2.82% 2.82% 
From 20 to 50 3.31% 3.12% 3.12% 2.39% 

* The numbers in the content of Table 5 represent the decrease rates of average 
absolute relative error for travel time prediction with the according increase of the 
number of imputation m.  
 

Overall, the developed missing data imputation system, consisting of an integrated 
multiple imputation model for direct prediction of the travel time and a multiple imputation 
model for estimating the missing detector data, demonstrated its potential for use in practice, 
based on the experimental results with the field data (June 20th, 21st, 22nd and 26th, 2006). Both 
models outperform other widely-used imputation methods. With the number of imputations 
being set at 50, the integrated model can offer the acceptable accuracy and robustness for travel 
time prediction over those sample days. 

 

CONCLUSIONS 
This paper has developed two multiple imputation models, one integrated imputation model for 
the travel time prediction (Model M-1) and one multiple imputation model for estimating the 
missing detector data (Model M-2). Both models taking into account geometric features and 
traffic patterns over the target freeway segment can achieve better accuracy and robustness than 
those in the literature. Model M-1 can directly predict the missing travel time under some 
missing data scenarios. Model M-2 that classifies detector stations into groups is designed to 
take advantage of historical information in restoring missing set of detector data for the 
prediction model. Based on the data collected from 10 roadside detectors on a 25-mile stretch 
of I-70 eastbound in ARAMPS, the evaluation results indicate that both Models M-1 and M-2 
outperformed two commonly-used imputation methods (mean substitution and Bayesian 
forecast) when missing data rates of 20%, 40%, 60% and 100% incurred at a critical detector. 
The average absolute relative errors of M-1-50 and M-2-50 under the missing rate of 100% 
(10.08% and 9.88% respectively) were noticeably lower than MS (11.84%) and BS(12.21%). A 
sensitivity test showed that the performance of Model M-1 may increase more than 10% when 
the number of imputation (m) increases from 5 (M-1-5) to 50 (M-1-50).  

In brief, this study has presented two effective methods for contending with the data 
missing issues in real-time operations of travel time prediction. Since the impact of missing 
data on the prediction accuracy may vary with the methods used for prediction and the actual 
detector spacing, it should be recognized that extensive field calibration of the proposed 
methods will be needed for any real-world applications. Also note that the effectiveness of any 
imputation model is based on the assumption that all developed sensors have been rigorously 
calibrated and detected traffic data such as speed, volume are sufficiently for developing a 
reliable prediction model.   
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