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ABSTRACT 
 
This study develops a hybrid model that can reliably estimate travel times on freeways with 
sparsely distributed detectors having the spacing of more than one mile. The developed 
model, which includes a clustered linear regression model as the main component and a 
supplemental enhanced trajectory-based model, can effectively capture impacts of various 
geometric features, such as ramps and merging lanes, and different traffic patterns on the 
variability of travel times. The experimental results based on a field demonstration on a 25-
mile stretch of I-70 eastbound with 10 detectors have demonstrated the promising properties 
of the developed model under various congestion levels. 
 

INTRODUTION 
 

As is well recognized, travel times are essential information for traffic controls, operations, 
transportation planning, and advanced traveler information systems (ATIS). Several 
measurement methods have been used in practice to estimate travel times, including probe 
vehicles, vehicle identification with in-vehicle devices (i.e., electronic toll tags), and vehicle 
identification without in-vehicle devices (i.e., video-based vehicle identification and license 
plate recognition). However, due to the limited sample sizes the probe vehicle method can 
provide and the high costs associated with both types of vehicle identification methods, it is 
not cost-effective for any responsible agency to sustain ATIS operations with those methods. 

 
With recent advances in vehicle detection technologies, more and more studies emerge 

to provide better estimates of travel times using new traffic detectors, which can provide 
reliable measurements of cumulative traffic flows and occupancy for any pre-specified time 
interval. As reported in the literature, most existing models for travel time estimation are 
developed and tested for short links (i.e., detectors placed less than 0.5 miles apart). These 
models may not work properly on long links due to the fact that their embedded assumptions 
may not be valid when detector spacing is longer than 0.5 miles, as in most existing highway 
systems. 

 
This paper presents a hybrid model that provides reliable travel time estimation with 

sparsely placed detectors (i.e., more than one mile apart). The performance of the model has 
been tested with the dataset obtained from 10 road-side detectors installed on a 25-mile 
stretch of I-70 eastbound and found to be reliable to serve as the basis for a real-time travel 
time prediction system. 
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This paper will first summarize previous works on travel time estimation, followed by 

the introduction of the model structure. A case study on I-70 eastbound will then be presented 
to demonstrate the potential of the developed model. Conclusion and future research works 
will be mentioned in the last section. 

 
LITERITURE REVIEW 

 
In review of the literature, many efforts have been made to estimate travel times from the 
traffic data collected during the time in which the trip has been completed. As reported in the 
literature, most studies of travel time estimation fall into one of the following categories: 
flow-based models, vehicle identification approaches, and trajectory-based models. 

 
FLOW-BASED MODELS 
Flow-based models have been applied to freeway mainline segments without ramps and 
having uniform travel speeds across all lanes. This type of model estimates travel times by 
comparing upstream and downstream flow counts, based on the assumption of first depart, 
first arrive. Example works can be found from Dailey (1), Nam and Drew (2), Petty et al. (3) 
and Liu et al. (4) However, existing flow-based models require uniform travel speeds across 
all lanes and therefore cannot be reliably applied to segments with ramps or complex traffic 
patterns, i.e., spillback from a downstream off-ramp. Another issue that makes this type of 
model unsuitable for real-world applications is detector errors. Detector errors are most likely 
nonsystematic in nature, and the error patterns remain difficult to model well. Unpredictable 
measurement errors for traffic count may dramatically reduce the model accuracy.  
 
VEHICLE IDENTIFICAIOTN APPROACHES 
Vehicle identification approaches estimate travel time by matching the sequence of vehicles 
in a single lane. The key concept of this type of method is to find vehicles’ signatures from 
the upstream and the downstream detectors in order to calculate their travel times. 

 
Previous studies in this category include matching vehicles with classification 

information obtained from new detector hardware (5-7),with video-based signatures (8), and 
with the sequence of vehicles from loop detectors (9-12). 

 
In general, vehicle identification models performed well in one single lane with a low 

lane-changing rate. They cannot provide reliable travel time estimations for freeway segments 
near ramps. Using vehicles’ visual signatures may potentially improve the model’s ability to 
deal with ramp traffic. However, all VRI models require either improved detection technology 
or a high bandwidth to transfer the raw data needed to extract vehicle signatures, which will 
result in high system costs and long system processing times. 

 
TRAJECTORY-BASED MODELS 
The common features of trajectory-based models are estimating temporal and spatial traffic 
conditions within a link from upstream and downstream detector data and drawing a target 
vehicle’s trajectory so as to provide the estimated travel time. 

 
One of the typical studies in this category is by Coifman (13), who estimated the 

vehicle in-segment speed based on the speed data from a detector placed at one end of a 1/3-
mile segment and the traffic propagation relations. With the assumption that the traffic state at 
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one detector location changes discretely and equal to vehicles’ headways. Some researchers 
have made efforts to use both the upstream and downstream detector information for 
estimating travel times with piecewise constant-speed-based (PCSB) methods (14-16), which 
assume a constant travel speed within the link. Van Lint and van der Zijpp (17) estimated 
travel times with a piecewise linear-speed-based (PLSB) model, which is reported to 
outperform PCSB models in simulated cases. 

 
Note that existing piecewise models do not consider traffic propagation relations, 

which use the detected speeds at the upstream and downstream detectors at the same time to 
estimate travel times in short segments (i.e., 0.5 miles).In summary, many studies use the 
trajectory-based models to estimate vehicles’ in-segment speeds, and thereby compute their 
travel times. This type of method is relatively applicable to long links and can better tolerate 
detector errors than the flow-based models. With proper modifications, this type of model has 
the potential for use on segments with non-uniform travel speeds. 
  

Among the three types of travel time estimation models, the flow-based models, which 
need high accuracy of detector data and uniform geometric features, are the least applicable 
for use in a real-world system. Vehicle identification models need new detection hardware or 
take raw detector signals as input and therefore may incur high system costs and the need for 
a large data transmission bandwidth. In contrast, the trajectory-based model for travel time 
estimation is relatively promising, since it has the potential to fit with long segments and more 
complex geometric features. 

 
MODEL DEVELOPMENT 

 
In review of the literature, it is clear that providing a reliable estimate of travel times remains 
a challenging task, especially for highway segments with long detector spacing (e.g., > 0.5 
miles).  

 
Despite the tremendous efforts made by traffic flow researchers over the past decades 

in modeling the evolution of congestion patterns, it remains quite difficult for any existing 
method to reliably estimate or predict the propagation of traffic patterns under both recurrent 
and nonrecurrent congestion patterns. A failure to capture the temporal and spatial 
distributions of traffic patterns will actively degrade the quality of any model for travel time 
estimation or prediction. 

 
Changes in geometric features often result in different roadway capacity and traffic 

patterns, including: Lane drop, Lane addition, On-ramp/off-ramp and Other Factors. Figure 1 
illustrates an example of congestion caused by this phenomenon in two through lanes on I-70 
near Exit 87A to US29 southbound (Figure 2). Due to their local knowledge of possible 
delays and congestions caused by weaving traffic near a ramp, drivers may avoid using the 
through lane next to the ramp. One needs to carefully analyze the discrepancy of traffic flow 
speeds between lanes to estimate the average speed within one segment.  

 
Aside from the aforementioned factors, the traffic flow patterns and the resulting 

travel times may also vary with the low visibility caused by weather or sun glare or with poor 
road surface conditions caused by rain, snow or debris. Quantifying the impacts of those 
factors, however, has not yet been reported in the literature and is beyond the scope of this 
study, too. 
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Figure1 Average vehicle counts in 5-minute intervals on 

four Thursdays in July, 2006 at Exit 87A on I-70 

 
Figure 2 Geometry of I-70 at Exit 87A 

 
FLOWCHART OF THE HYBRID MODEL 
Figure 3 shows the flowchart of the proposed hybrid model, which consists of two main 
components: a clustered linear regression model and an enhanced trajectory-based model. 
When applying the hybrid model, the system will first cluster traffic scenarios into predefined 
categories based on the traffic data. The system will employ the linear regression model if the 
detected traffic scenario belongs to a category in which a linear regression model has been 
trained with a sufficiently large sample of historical travel times. Otherwise, it will employ 
the enhanced trajectory-based model, which does not require pre-training with a large amount 
of historical data, to produce the travel time estimation. 

 
Figure 3 Flowchart of the hybrid travel time estimation model 
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When a vehicle is traveling in a link, the range of possible travel times is usually constrained 
by the traffic pattern. For example, a vehicle can never reach free-flow travel time when there 
is heavy congestion in the link. Hence, this study first develops a set of clustered linear 
regression models to categorize traffic conditions into predefined traffic scenarios and then 
estimates a travel time for each scenario. 

 
Model Formulations 
By dividing a link into two equal-length sub-links, one can express a vehicle’s travel time as 
follows: 
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d  is the average travel speed in the jth half 

Coifman (13) estimated a vehicle’s in-segment speeds from the upstream detector data 
after the departure time, or from the downstream detector data before the vehicle’s arrival 
time, to obtain a travel time estimation. To improve the model’s robustness for long segments 
(e.g., > 0.5 miles), this study assumes a linear relation between a vehicle’s average in-segment 
speed and the average speed of the upstream or downstream through traffic during the same 
time interval, as follows: 

)))(),((ˆ(2)))(,(ˆ(2
)(

22
21

12112
1

11 atttua
L

attua
L

t
dd

Thru
d

d

d
Thru
d

d
d ++

+
+

=
+ τττ

τ   (2) 

where ija  are coefficients. 
 
On the right side of Eq. 2, the first term is the travel time for a vehicle to traverse the 

first half of the link (d, d+1); the second term is for the second half of the link. Similar to the 
model developed by Liu et al. (4), Eq. 2 has unknown variables on both sides. The 
performance of the iteration-based solution algorithm by Liu et al. (4) is conditioned on the 
quality of detector data, which is often undesirably poor in real world systems. Hence, this 
study uses a preliminary estimate of the travel time to replace the actual travel time 
information in the independent variables to achieve better robustness. More specifically, 
assuming that traffic conditions in a link (d, d+1) can be divided into P scenarios with a 
relatively small range of travel times in each scenario, one can then replace the actual travel 
time information in independent variables in Eq. 2 with a preliminary estimate of travel time 
for this scenario to obtain Eq. 3: 
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where p  is the index of predefined traffic scenarios in link (d, d+1); 
 )( pE

dτ  is the preliminarily estimated travel time in link (d, d+1) under the 
pth predefined traffic scenario; 

 d
pγ   is the estimated proportion of time taken for the vehicle to traverse 

the first half of the link (d, d+1) under the pth scenario; and 
 1

ija   are coefficients. 
Note that one can obtain the preliminary estimate of the travel time in various ways. 

For example, using the average of collected travel times from a sufficient number of samples 
may be one of the simplest methods. However, for rarely observed traffic scenarios, it is 
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difficult to produce a reliable estimation of the travel time at this preliminary stage. Therefore, 
it requires at least one supplemental model to deal with scenarios lacking a reliable 
preliminary estimate. 

 
Because detector data is usually collected on a lane-by-lane basis, the average speed of 

through traffic is not directly available from the detector information. Most existing studies 
either take data from one lane (e.g., the far left lane) as the average condition of the through 
traffic, or simply compute the average over all through lanes. However, as analyzed in the 
previous section, traffic conditions in some lanes may not affect the through-flow speed. 
Therefore, one needs to carefully select critical lanes to obtain the average speed of through 
traffic flow. This study assumes that the average speed of through traffic flow has a linear 
relation with those in all critical lanes, which may include both the through lanes (first item 
on the right side of Eq. 4) and the ramp lanes (second item on the right side of Eq. 4):  
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where k
ija  are coefficients. 

 
Note that reliable speed data may not be directly available from one detector and thus 

needs to be estimated from the available data. A commonly used method to estimate speed is 
to rely on the relation between traffic flow, occupancy and the average vehicle length. 
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where g is the average vehicle length. 
 
As reported in the literature, Eq. 5 may not be valid when the time interval is short, 

because average vehicle lengths may vary significantly during short intervals. However, the 
impact of this error decreases with an increase in the length of the selected time interval 
and/or the traffic volumes. Assuming that, under scenario p, a factor gp  can satisfy Eq. 5, one 
can then obtain Eq. 6 from Eq. 4 and Eq. 5 as follows:  
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where pT
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,   is the coefficient of the lath lane in )(1, pd

dd +CLT  at detector d under 
the pth traffic scenario for link (d, d+1); 
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 p
db ,0  is the intercept for the pth scenario for link (d, d+1). 

In order to estimate travel times with Eq. 6, one needs to estimate d
pγ , which is the 

portion of time it takes one vehicle to traverse the first half of link (d, d+1). 
 

Defining Traffic Scenarios 
Defining the clustering function for a clustered linear regression model for travel time 
estimation is a challenging task which shall have the following features: 

 Travel times in each clustered traffic scenario should always have a relatively 
small variation; 

 The variables used for clustering should be obtainable from detectors; 
 The input variables from both the upstream and downstream detectors should be 

obtained only from critical lanes so as to reflect actual through traffic conditions. 
 The following guidelines can help define the traffic scenarios under recurrent 

congestions: 
Predefine the preliminary types of patterns, based on the congestion level detected by 

the upstream and the downstream detectors as shown in Table 1. 
 

Table 1 Four types of basic traffic scenarios in each link 
Traffic Condition at 
Upstream Detector 

Traffic Condition at 
Downstream Detector Congestion Level in the Link 

No congestion No congestion Free-flow condition 

Congested No congestion Moderate congestion or 
transition period 

No congestion Congested Moderate congestion or 
transition period 

Congested Congested Heavy congestion 
 
AN ENHANCED TRAJECTORY-BASED MODEL 
As it is often difficult to have sufficiently large samples for all possible traffic scenarios from 
field observations, this research has also developed an enhanced trajectory-based model to 
serve as a supplemental component for those scenarios with inadequate samples of historical 
data. 
 

Using the trajectory-based model for travel time estimation, one needs to estimate the 
speed from known traffic data. Because speed data used in most trajectory-based models are 
for short intervals, Eq. 5 cannot provide reliable estimates. Instead, this study proposes the 
following equations for speed estimation: 
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where  ),( txu  is the speed to be computed at location x at time t; 
 ),( txo   is the occupancy in the small section near location x at time t; 
 freeo   is the upper bound of occupancy under free-flow traffic conditions; 
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 congo   is the boundary of occupancy between moderately and heavily 
congested conditions; 

 maxo   is the maximum occupancy under recurrent congestion; 
 freeu   is the free-flow speed; 
 congu   is the boundary of the speed between moderately and heavily 

congested traffic conditions; 
 minu   is the minimum speed under heavily congested conditions; and 
 m and n are parameters to be calibrated with field data. 
 
One can calibrate the boundaries of occupancy and speed data with collected travel 

times and detector data. The method reported by Zou and Wang (18)is applicable for 
estimating m and n in Eq. 7 with collected field travel time information. 
 

Unlike the models in the literature for short links (13, 17), this study develops two 
types of in-segment speed estimation methods, depending on the vehicle’s current position in 
a link. When the vehicle is within a short distance of the upstream detector or the downstream 
detector, this study considers a possible range of traffic propagation speeds to estimate the in-
segment traffic situations from nearby traffic detectors. Otherwise, this study uses a model 
combining both traffic propagation relations with the piecewise linear speed-based (PLSB) 
model to achieve better robustness. 

 
As shown in Figure 4, the model will first estimate occupancy using the enhanced 

trajectory-based model at the vehicle’s position with Eq. 8 and will then apply Eq. 7 to 
compute the vehicle’s speed at location x at time t. The vehicle is assumed to travel at this 
speed over a short interval, stept , and then its new location at time (t+ stept ) will be updated. 
The procedure repeats the same steps until the vehicle arrives at the downstream detector. 

 
Figure 4 Flowchart of the enhanced trajectory-based travel time estimation model 
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PERFORMANCE EVALUATION 
 
The aforementioned hybrid model for travel time estimation has been successfully calibrated 
and validated with actual travel time data collected from the field site on a 25-mile stretch of 
I-70 Eastbound from MD27 to I-695 with 10 detectors. (Figure 5)  

 
Figure 5. Locations of ten detectors on I-70 Eastbound 
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conducted two travel time surveys in the morning peak hours on April 6th, 2006 and April 
20th, 2006 for the sub-segment from Detector 3 to Detector 10. This segment often incurs 
heavy congestion in the morning peak hours on Tuesdays and Thursdays. The actual travel 
times were obtained by matching vehicles from two videos taken at the beginning and end of 
the sub-segment. There were a total of 71 data points collected on April 6th, 2006 and 114 
data points collected on April 20th, 2006. The surveys covered both transition periods between 
congestion and free-flow state, as well as heavily congested periods.  
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Subsegment from Detector 3 to 7 is about 4-mile in distance that consists of two 
interchanges and two ramps. Complex geometric features and high variation in traffic 
volumes have made this subsegment difficult for developing travel time estimation model.  

 
Tables 2(a) and (b) summarize the performance of the developed model on the 

subsegment  against the actual data collected on two different days. Figures 6(a) and (b) show 
the distribution of estimated and actual travel times vs. departure time for two days, where the 
estimated travel times showed a similar trend to the actual travel times. The results from the 
travel time estimation model showed satisfactory results in all travel time categories during 
those two days with an average of less than 8.8% relative absolute error. Even in the transition 
periods, the developed model was still able to estimate travel times with an error of less than 
70 seconds. In heavily congested cases, in which travel times are mostly greater than twice of 
the free-flow travel time (520 seconds), the developed model can still provide estimates with 
average absolute error of less than 90 seconds. 

 
Table 2(c) shows the overall evaluation results for the transition periods (travel times 

between 520 seconds and 800 seconds), moderate congestion (travel times between 800 and 
1000 seconds) and heavy congestion (travel times greater than 1,000 seconds). For all the 184 
collected actual cases, the developed model successfully yielded the estimated travel times 
with the acceptable accuracy. 

 
Table2 Performance evaluation of hybrid model for travel time estimation 

(a) Performance evaluation of travel time estimation model on the subsegment from Detector 
3 to Detector 10 on April 6th, 2006 

Travel Time Range (sec)  520 to 800 800 to 1000 >1,000 
Sample Size 10 12 49 

Maximum Travel Time (sec) 791 998 1,290 
Average Travel Time (sec) 710 928 1,109 

Average Absolute Error (sec) 51.9 60.3 83.6 
Average Relative Error (%) 7.3% 6.6% 7.4% 

(b) Performance evaluation of travel time estimation model on the subsegment from Detector 
3 to Detector 10 on April 20th, 2006 

Travel Time Range (sec)  520 to 800 800 to 900 900 to 1000 
Sample Size 13 84 17 

Maximum Travel Time (sec) 796 898 985 
Average Travel Time (sec) 767 847 929 

Average Absolute Error (sec) 65.2 49.4 73.0 
Average Relative Error (%) 8.7% 5.8% 7.8% 

(c) Overall Performance evaluation of travel time estimation model on the subsegment from 
Detector 3 to Detector 10 on April 6th and April 20th, 2006 

Travel Time Range (sec)  520 to 800 800 to 1000 > 1000 
Sample Size 23 112 49 

Maximum Travel Time (sec) 796 998 1290 
Average Travel Time (sec) 742.3 847.2 1109.1 

Average Absolute Error (sec) 58.5 54.5 83.6 
Average Relative Error (%) 8.1% 6.3% 7.4% 
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Figure 6. Comparisons between actual and estimated travel times in the subsegment from 
Detector 3 to Detector 10 on (a) April 6th, 2006 and (b) April 20th, 2006 

 
 

CONCLUSIONS 
 
This paper presents a hybrid travel time estimation model that uses a clustered linear 
regression model as the main model, and an enhanced trajectory-based model as its 
supplemental component. The clustered linear regression model functions to categorize traffic 
conditions in a link into several scenarios, based on the exhibited congestion patterns. One 
can then construct the input dataset with selected critical lanes. The primary reason for using 
an enhanced trajectory-based model as a supplemental component is to contend with the lack 
of sufficient samples for some relatively uncommon traffic scenarios. The proposed 
supplemental model can take advantage of the traditional trajectory-based methods grounded 
on traffic propagation relations and piecewise linear-speed-based models to provide reliable 
travel time estimations on long links. 
 

An extensive comparison between the collected and estimated travel times clearly 
indicate that the developed model is able to provide reliable estimates under transition 
periods, moderate congestion, and heavy congestion with an average relative absolute error 
less than 8.8%. During transition periods in the subsegment from Detector 3 to Detector 10, 
the developed model may yield a relatively large error, but it remains within the range of one 
minute. Overall, the developed hybrid model is capable of providing reliable travel times 
estimates from on-line detector data, and serving as a tool for constructing the historical travel 
time database. 
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