DEVELOPMENT OF PLANNING AND EVALUATION MODELS FOR SUPERSTREET

THESIS DEFENSE

May 3rd 2016

LIU XU

CONTENTS

Research **Background**

Critical Issues 0

- Framework
- Model 1 0 Model 2 0
- Model 3 0

• Critical Issues Model Development

 Future works

 o Model Validation/

Methodology Conclusions

Evaluation

- **o** Contributions

RESEARCH BACKGROUND

Superstreet

Research Background

BENEFITS: *Increased Popularity of Superstreets.*

- Economical Benefits: Less expensive than an interchange;
- Safety Benefits: Reduction in number & severity of the collisions;
- Operation Benefits: Provide signal progressions along the arterial; and
- Environmental Benefits: Reduction in pollutions.

Research Background

Literature Review

- A number of studies in the literature have confirmed its safety benefits. (Hummer, 2001, 2007, 2008, 2009, 2010, 2012; Kim, 2007; Edara, 2007).
- The distance between the main intersection and U-turn crossover is the dominating factor that influence a Superstreet's safety performance (Liu, 2007; Hochestein, 2009; Hugues, 2010; Olarte, 2011).
- In fact, over the past decades, only limited studies (Olarte, 2011) have attempted to address the issues of design and operations of a Superstreet.
- A newly published report (FHWA, 2014) also indicated the lack of sufficient information in the area of designing a Superstreet.

Existing Literature fall short on the subjects of Design and Evaluation of Superstreets.

Critical Issues

Limitations of Existing Studies

- How to determine the U-turn offset length that dominates the geometric design of a Superstreet?
- What would be the criteria for determining the need of installing signals for a Superstreet?

Model-2

Model-1

• How to assess whether the bay length among a signalized Superstreet is sufficient to prevent any spillback from happening?

Model-3

- How to design a proper signal timing plan, considering its unique geometric layouts?
- How to minimize the delay experienced by the minor road drivers due to the detour operations in a Superstreet.

THESIS FRAMEWORK

MINIMUM U-TURN OFFSET MODEL FOR A UN-SIGNALIZED SUPERSTREET

Critical Components of U-turn Offset

11/60

- l_1 : Acceleration and merging length;
- *l*₂: Lane-changing length;
- *l*₃: Deceleration and initial queue length;
- L: Minimum U-turn offset.

Minimum U-turn Offset Model for an Un-Signalized Superstreet

Minimum U-turn Offset Model for an Un-Signalized Superstreet

12/60

Merging Scenarios

3)

The merging maneuver, based on the relative gaps between the leader and the follower, can be classified into three distinct types:

				Leading Vehicle	
1)	Free merging:	Target Lane Subject Lane			
			Subject Vehicle		

2) Forced merging: the follower was 'forced' to break pedal to maintain safe space headway;

13/60

Resource: Hidas, P. (2005). Modelling vehicle interactions in microscopic simulation of merging and weaving. Transportation Research Part C: Emerging Technologies, 13(1), 37-62.

Minimum U-turn Offset Model for an Un-Signalized Superstreet

Merging Scenarios

 $(h-t_r) \cdot v_1 - l_v = \frac{(v_1 - v_0)^2}{2a_2}$

where v_1 is the speed of mainline traffic;

 v_0 is the speed of subject vehicle;

 t_r is the average reaction time, 1.0s;

h is a given time headway;

 l_v is the AASHTO recommended passenger car length, 20ft;

 a_2 is the AASHTO recommended deceleration rate, 11.2 ft/s².

$$t* \ge \frac{(v_1 - v_0)^2}{2a_2v_1} + \frac{l_v}{v_1} + t_r$$

For any randomly given subject vehicle, the minimum acceptable headway must be no less than t*

14/60

Minimum U-turn Offset Model for an Un-Signalized Superstreet

Acceleration & Merging Length

□ Assumptions

During the merging process, subject vehicle has to accelerate from stop. Assuming

(1) The subject vehicle accelerates from 0_{mph} with a fixed acceleration rate until reaches speed limit v_1 , and then stay at the same speed until reach the U-turn location;

(2) Critical headway t_c follows a certain distribution, in this case, assume critical gap for drivers from side street follows normal distribution~ $N(\mu, \sigma^2)$;

(3) The headway follows negative exponential distribution since the car arrival follows Poisson distribution.

Acceleration & Merging Length

Set a link between headway distribution and U-turn offset Length

For a random vehicle, at time point t, the lane-changing probability can be:

 $F(t) = P\left\{h \ge t_c(t)\right\}$

Where t_c denotes the critical gap for a certain driver at time point t.

If assuming that at time point $t + \Delta t$, where $\Delta t \rightarrow 0$,

Successful Merging Probability at $t + \Delta t$ $p_1(t + \Delta t) = p_1(t) + (1 - p_1(t))\Delta t(F(t))$

Since $\Delta t \rightarrow 0$, we can have $t_c(t + \Delta t) = t_c(t)$, then

F(t) is not a constant but a function with respect to time. So we cannot have closed form of P(t)

16/60

how to calculate F(t) ?

F(t) stands for the probability for a random driver merging into major road at any time point t. It is a function with respect to both time and human characteristic.

 $\frac{p_1(t+\Delta t)-p_1(t)}{\Delta t} = [1-p_1(t)] \cdot F(t)$ $-In[1-p(t)]dP = \int_0^{+\infty} F(t) dt$

Minimum U-turn Offset Model for an Un-Signalized Superstreet

Merging Length

The probability of a driver having a critical gap equals t_c^* at time point t is

$$f(t_c^*)dt = \left[\frac{1}{\sigma\sqrt{2\pi}}\exp\frac{-(t_c^*-\mu)}{2\sigma^2}\right]dt$$

Meanwhile, the headway distribution follows shifted negative exponential distribution as

$$\Pr(h \ge t_c) = \begin{cases} e^{-\lambda(t_c - t_m)}, \text{ for } t_c \ge t_m \\ 0, \text{ for } t_c < t_m \end{cases}$$

Where $\lambda = 1/(\overline{t} - t_m)$ while \overline{t} is the average gap (s) and t_m is the minimum headway(s).

A random vehicle to conduct a successful merging can be

$$\int_{t_c=0}^{\infty} \Pr(h \ge t_c) f(t_c) dt$$

17/60

Minimum U-turn Offset Model for an Un-Signalized Superstreet

Merging Length

There exist two thresholds $t_{m,}t_{nr}$ that stands for the lower bound and upper bound, respectively (Pollatschek, 2002).

Therefore, the overall merging probability can be expressed as:

$$\int_{t_c=0}^{\infty} \Pr(h \ge t_c) f(t_c) dt = \int_{t_c=0}^{\max(t_m, t^*)} \Pr(h \ge t_c) f(t_c) dt + \int_{t_c=\max(t_m, t^*)}^{t_m} \Pr(h \ge t_c) f(t_c) dt + \int_{t_c=t_m}^{\infty} \Pr(h \ge t_c) f(t_c) dt$$
since $\Pr(h \ge t_c) = 0$, $\int_{t_c=0}^{\max(t_m, t^*)} 0^* f(t_c) dt = 0$
Since $f(t_c) dt \approx 0$, $\int_{t_c=t_m}^{\infty} \Pr(h \ge t_c) f(t_c) dt \approx 0$
Finally, we can have

$$\int_{t_c=0}^{\infty} \Pr(h \ge t_c) f(t_c) dt = \int_{t_c=\max(t_m,t^*)}^{t_m} \Pr(h \ge t_c) f(t_c) dt = e^{\lambda t_m + \frac{-2\mu\lambda\sigma^2 + \lambda^2\sigma^4}{2\sigma^2}} \left(\int_{\max(t_m,t^*)}^{t_m} \frac{1}{\sigma\sqrt{2\pi}} \exp \frac{-\left[t_c - (\mu - \lambda\sigma^2)\right]^2}{2\sigma^2} dt \right)$$

$$N \sim (\mu - \lambda\sigma^2, \sigma^2)$$

Minimum U-turn Offset Model for an Un-Signalized Superstreet

Resource: Pollatschek, M. A., Polus, A., & Livneh, M. (2002). A decision model for gap acceptance and capacity at intersections. Transportation Research Part B: Methodological, 36(7), 649-663.

18/60

Lane-Changing Length

As $p_k(t)$ denotes the probability that the vehicle is in lane k at time point t.

Remember for 1st successful merging probability, we have:

$$p_1(t + \Delta t) = p_1(t) + (1 - p_1(t))\Delta tF(t)$$

For k_{th} lane change, we can get

$$p_{k}(t + \Delta t) = p_{k}(t) + [1 - p_{k}(t)] \cdot p_{k-1}(t) \cdot \Delta t \cdot F(t)$$

$$p_{k}'(t) = [1 - P_{k}(t)] \cdot p_{k-1}(t) \cdot F(t)$$

19/60

Because both F(t) and p(t) are not a constant but functions with respect to time. So we cannot have closed form of $P_k(t)$

Overlapping with Acceleration & Merging Length l_1

Minimum U-turn Offset Model for an Un-Signalized Superstreet

Numerical Example

Given the headway distribution of arterial traffic and the predetermined overall successful rate, we can get the relationship between probability of kth lane changes and the required distance.

A numerical example is shown on the right-hand side:

PARAMETERS	VALUES
t _w	11 seconds
t_m / t_{sa}	2 seconds
\overline{t}	5.6 seconds
$\overline{\lambda}$	0.28
$\overline{\mu}$	0.67
<i>a</i> ₁	4.0~4.5 ft/ s2
a2	11.2 ft/s2
<i>v</i> ₁	63~67 mph

20/60

SSAM Evaluation

- Stop control for EB minor road
- Yield control for WB minor road

21/60

Studies Segment:
 South-Bound U-turn Segment

US 301 @ Ruthsburg Rd, MD

Scenario 1: 1500ft southern U-turn offset (*Field implementation*)
 Scenario 2: 1100ft southern U-turn offset (*Mean of model output*)
 Scenario 3: 700ft southern U-turn offset (*Shortened U-turn offset*)

•The only difference between three scenarios is the length of southern U-turn offset. The rest of geometrics are the same for all scenarios and are measured from the field.

Minimum U-turn Offset Model for an Un-Signalized Superstreet

SSAM Measurements

- Minimum Time To Collision (TTC)
- Minimum Post-Encroachment Time (PET)

- Initial Deceleration Rate (DR)
- Maximum Speed (MaxS)
- Maximum relative Speed Difference (DeltaS)
- Maximum Deceleration Rate (MaxD)
- Maximum "post collision" DeltaV (MaxDelatV)

Severity of Collisions

22/60

MaxDeltaV is the maximum speed change of either vehicle in the conflict.

Safety Comparison(Scenario 2 VS. Scenario 1)

U-turn Segment safety performance Comparison (1100ft VS. 1500ft)

No significant Variance Variance Mean Mean Mean difference in terms t value t critical Sigfinicant **SSAM Measures** (1100ft) (1100ft)(1500ft) (1500ft) Difference of conflict NO TTC 0.217 0.184 0.217 0.144 -0.0021.668 0 severity! PET -0.018 1.668 NO -0.003 0.026 0.02 0.08 0.083 -0.529 -0.868 MaxS 22.441 8.983 22.97 11.465 1.668 NO 8.678 -1.263 NO -1.265 DeltaS 9.953 9.942 27.489 1.668 0.2 DR -1.0045.08 -1.2035.582 0.443 1.668 NO -2.482 0.587 0.355 MaxD 9.743 -2.83810.67 1.668 NO NO -0.628 **MaxDeltaV** 4.485 2.711 5.113 7.253 -1.214 1 668 Variance Variance t Mean Mean Mean t No significant critical Signficant Difference **Conflict Types** (1100ft)(1100ft)(1500ft)(1500ft)value 0 difference in terms 0 0 0 NO Crossing 0 1.86 0 **Rear-end** 5 2.2 7.2 21.7-0.7441.86 NO 22 of No. of conflicts. 2 Lane changing 0.5 0 1.86 NO 1 1 0 NO 36 8.2 22.7 -0.642 1.86 Total 6 -2.2

No statistically significant difference between 1500ft and 1100ft in terms of both number of conflicts and all SSAM measurements.

23/60

Minimum U-turn Offset Model for an Un-Signalized Superstreet

_

Safety Comparison(Scenario 3 VS. Scenario 2)

									More Sever
SSAM Measures	Mean (700ft)	Variance (700ft)	Mean (1100ft)	Variance (1100ft)	t value	t critical	Sigfinicant	Mean Difference	Collisions under
TTC	0.19	0.187	0.217	0.184	-0.136	1.668	NO	-0.026	700ft scenario.
РЕТ	0.078	0.028	0.08	0.026	-0.01	1.668	NO	-0.002	
MaxS	22.952	8.076	22.441	8.983	1.044	1.668	NO	0.511	
DeltaS	13.111	37.605	8.678	9.953	3.966	1.67	YES	4.433	
DR	-0.57	2.399	-1.004	5.08	0.909	1.677	NO	0.434	
MaxD	-2.907	10.679	-2.482	9.743	-0.797	1.668	NO	-0.425	
MaxDeltaV	6.791	10.316	4.485	2.711	3.943	1.67	YES	2.306	

U-turn Segment safety performance Comparison (700ft VS. 1100ft)

Conflict Types	Mean (700ft)	Variance (700ft)	Mean (1100ft)	Variance (1100ft)	t value	t critical	Sigfinicant	Mean Difference
Crossing	0	0	0	0	0	1.86	NO	0
Rear-end	5.4	6.3	5	22	0.168	1.86	NO	0.4
Lane								
changing	2.8	0.7	1	2	2.449	1.86	YES	1.8
Total	8.2	7.2	6	36	0.748	1.86	NO	2.2

Increased possible lanechanging collisions under 700ft when comparing 1100ft

24/60

a. Increased possible lane-changing collisions under 700ft than in 1100ft;

b. More sever collisions under 700ft than in 1100ft.

Minimum U-turn Offset Model for Un-Signalized Superstreet

Safety Comparison(Scenario 3 VS. Scenario 1)

More sever collisions under 700ft Mean Variance Mean Variance Mean **SSAM Measures** (700ft) (1500ft) (1500ft) t critical Sigfinicant (700ft) Difference t value TTC -0.027 0.19 0.187 0.217 0.144 -0.1591.664 NO 0.028 -0.005 PET 0.02 0.078 0.083 -0.0311.664 NO -0.018 MaxS 22.952 8.076 22.97 11.465 -0.036 1.664 NO DeltaS 13.111 37.605 1.664 YES 3.168 9.942 27.489 3.502 DR YES -0.57 2.399 -1.2035.582 1.816 1.664 0.633 NO MaxD -2.90710.679 -2.83810.67 -0.131.664 -0.0691.664 YES 1.678 **MaxDeltaV** 6.791 10.316 5.113 7.253 3.434

	Mean	Variance	Mean	Variance				Mean
Conflict Types	(700ft)	(700ft)	(1500ft)	(1500ft)	t value	t critical	Significant	Difference
Crossing	0	0	0	0	0	1.86	NO	0
Rear-end	5.4	6.3	7.2	21.7	-0.761	1.86	NO	-1.8
Lane changing	2.8	0.7	1	0.5	3.674	1.86	YES	1.8
Total	8.2	7.2	8.2	22.7	0	1.86	NO	0

U-turn Segment safety performance Comparison (700ft VS. 1500ft)

Increased possible lane changing collisions for 700ft when comparing 1500ft

25/60

a. Increased possible lane-changing collisions under 700ft than in 1500ft;

b. More sever conflicts under 700ft than in 1500ft.

Minimum U-turn Offset Model for Un-Signalized Superstreet

Extended Application

Set the criteria for installing signal to accommodate the increased traffic

26/60

Minimum U-turn Offset Model for Un-Signalized Superstreet

INTERVAL-BASED BAY LENGTH EVALUATION MODELS FOR A SIGNALIZED SUPERSTREET

Operation Analysis

Field Survey and VISSIM Calibration

- This study has conducted a field survey at a signalized Superstreet Intersection (MD3 & Waugh Chapel Rd) to calibrate key parameters in VISSIM;
- The collected data include queue lengths, signal plan and traffic flow rates.
- Extensive simulation results reveal that the exponentially increased delay when Q/L ratio approaches to 1.

28/60

Figure. Scatter plot of average delay v.s. average QL ratio

TT (A) Left-turn lane group partially blocks the right-through lane group (B) Right-through lane group completely blocks the left-turn lane (C) Through lane group completely blocks the upstream lane groups group

Possible blockages among a Superstreet are shown below:

Critical Issues

Interval-based queue estimation models

- Traffic flow and signal design can both contribute to the formation of queues in a superstreet
- Incoming traffic fluctuates over time
- Signal coordination plan is another key factor to determine queue length
- Develop interval-based queue estimation models to take into account of the both uncertainties.

Two types of queues:

- 1) External Queues: only influenced by flow fluctuation
- 2) Internal Queues: influenced by both flow fluctuation and signal coordination

29/60

Queue lengths under different signal coordination plan

- For main intersection through-Q: Q5, departures from Q6 and Q9 are two sources for it's incoming flow.
- 1) through and right-turn movements from Q9;
- 2) departures from Q6

30/60

Model Development

Spatial distributions of all potential queues among a Signalized Superstreet

• Type-1 (Q7, Q8, Q9,Q10): Through queues at major & minor road

31/60

- Type-2 (Q3, Q6): U-turn queues at the crossover intersection
- Type-3 (Q1, Q4): Left-turn queues at main intersection
- Type-4(Q2, Q5): Through queues at main intersection

Interval-based Queue Model

Q8

Q5: Through queues at the main intersection

- Departures from Q6
- Through and Right-turn departures from Q9

 $D_{\text{For Q6}, \text{all the departures from it should merging into Q5, so at any time point k, the departures from Q6 to$ wherean so a start for link 9;

 $D_{6}^{k} = \begin{cases} \theta_{9TR} \text{ is the through and right-turning ratio for Q9;} \\ \Pi_{4}^{k} \text{ is the through a distribution for the former of the second second$

where : s_6 is ight same to be for the set of the se

 $A_{q_{0}p_{R}}^{k}$ is the arrived vehicle in Q6 at time point k; q_6^k is the vehicles in Q6 at time point k. Vehicles in Q9 at time k.

32/60

where : σ is the travel time from Q9 to Q5 τ is the travel time from Q6 toQ5;

while α is a binary variable.

Interval-based Queue Model

When Q5's red and Q9's green is concurrent, we **Example inclutions** t * can be derived using:

$$\overline{Q}_{5} = \begin{cases} \int_{t_{0}}^{t_{0}+R_{5}} D_{9TR}^{t-\sigma} dt_{t_{1}+t_{0}} \int_{(s_{5}-1)}^{t_{0}+\sigma} dt_{0} dt_{0}$$

33/60

By taking into consideration of incoming traffic fluctuation, we can have the maximum queue interval as:

$$Q_5^{\max} = \overline{Q}(A_5^{\max})$$

 $Q_5^{\min} = \underline{Q}(A_5^{\min})$

- · Field Collected peak hour traffic data are used for the case study
- Most of the simulated maximum queues fall within the estimated intervals.

34/60

- Field Collected peak hour traffic data are used for the case study
- Most of the simulated maximum queues fall within the estimated intervals.

Type-4(Q2): Main through queue

35/60

- Field Collected peak hour traffic data are used for the case study
- Most of the simulated maximum queues fall within the estimated intervals.

Type-2(Q3): U-turn queue

36/60

- Field Collected peak hour traffic data are used for the case study
- Most of the simulated maximum queues fall within the estimated intervals.

□ Type-3(Q1):Main left-turn queue

37/60

TWO-STAGE SIGNAL OPTIMIZATION MODEL FOR A SIGNALIZED SUPERSTREET

Two-stage Signal Optimization Model for a Signalized Superstreet

39/60

General Algorithm Two-stage MILP

40/60

Stage 1-Initial (Wong, 2003)

Control Objective: Capacity Maximization

Objetive Function:
$$Max(\sum_{i \in I} \mu_i)$$

- □ Subject to:
- Traffic rate will not exceed the saturation flow rate:

$$\mu_i \alpha_{ij} q_{ij} \leq s(\phi_{ij} - \xi \times t_l)$$

41/60

- Cycle length constraints: $\frac{1}{C_{\max}} \le \xi \le \frac{1}{C_{\min}}$
- Green ratio constraints: $g_{\min} \times \xi \leq \phi_{ij} \leq g_{\max} \times \xi$
- Sum of green time cannot exceed cycle length: $\phi_{ij_1} + \phi_{ij_2} = 1$; $j_{1,j_2} \in J$ and $j_1 \neq j_2$

Initial solution for stage 2: Cycle length and Green splits

Resource: Wong CK, Wong SC. Lane-based optimization of signal timings for isolated junctions. Transportation Research Part B: Methodological. 2003 Jan 31;37(1):63-84.

General Algorithm

Terminate Condition: After the change in CL is less than 1s

42/60

Critical Paths

- Path 1, 4: Through and left-turn movements from the minor road, including 3 signals which are 1-2-3 or 3-4-1;
- Path 2, 5: Through and right-turn movements on arterial, including 2 signals which are 2-3 or 4-1;
- Path 3, 6: Left-turn movements on arterial, including 2 signals which are 2-1 or 4-3.

Stage-2 Control Objective:

Green Band Maximization & Minor Road Waiting Time Ratio Minimization

Objective Function: $Max(\sum_{p \in P} \eta_p b_p - f_k \sum_{k \in K} D_{ik})$

Stage 2

Minor Road Waiting time constraints:

44/60

Stage 2

Minor Road Waiting time constraints:

45/60

General Algorithm

Terminate Condition: After the change in CL is less than 1s

46/60

Two-stage Signal Optimization Model for a Signalized Superstreet

> 47/60

Stage 1-Queue Constraints

- While keeping the previous *Objective function* & *All Constraints* in Initial;
- Maximum Queue won't exceed the link length:
 --For External Queues:

□ For Q7:

$$L_{7} \leq \frac{(1-\phi_{37}+t_{l}*\xi)*\alpha_{7}q_{7}*s}{(s-\alpha_{7}q_{7})\xi}$$

$$(1 - \phi_{37} + t_1 * \xi) \alpha_{37} q_{37} s \le L_7 (s - \alpha_{37} q_{37}) \xi$$

48/60

Stage 1-Queue Constraints

Internal Queues:

□ For U-turn Queue (Q4):

Q2

49/60

□ Input demand:

Using the MD 3@ Waugh Chapel Rd field collected traffic data, the model has ran 4 times to get the optimized signal plan.

50/60

The maximum waiting time for minor Rd drivers are not exceeding the upper bound.

Two-stage Signal Optimization Model for a Signalized Superstreet

51/60

Comparison Solution (Synchro)

 \mathcal{T}

Cycle Length: 120s

 \diamond

Green Splits:

SUB 2 offset_2=28s

 $\Phi 2$

22s

 \checkmark

 $\Phi 1$

98s

Proposed Model VS. Synchro

- Simulation Results Comparison (30 cases, 2hr duration per case)
- Maximum Queue Length Comparison for Q1—(Main Through Q)

53/60

- Simulation Result Comparisons (30 cases, 2hr duration per case)
- Maximum Queue Length Comparison for Q3--(Main left-turn Q)

54/60

- □ Simulation Result Comparisons (30 cases, 2hr duration per case)
- Maximum Queue Length Comparison for Q9—(U-turn Q)

55/60

- □ Simulation Result Comparisons (30 cases, 2hr duration per case)
- Maximum Queue Length Comparison for External Queues

56/60

Simulation Result Comparisons

Average Intersection Delay Comparison

Contributions

- A. Proposed the procedures and formulations to compute the *minimum required U-turn offset length* for an un-signalized Superstreet;
- B. Developed the *interval-based models* for evaluating *the bay length* design in a signalized Superstreet under the given demand variation;
- C. Presented an efficient *two-stage signal optimization* model to prevent queue spillback on intersection links and to *minimize the delays* experienced by minor road drivers.

This research offers reliable tools to assist traffic professionals in the design of Superstreets with and without signal control.

Future Work

- Field calibration and evaluation on the minimum U-turn offset length model for an Un-signalized Superstreet.
- Evaluation of the impacts of a Superstreet on its neighboring intersections.
- Coordination of a signal plan for a signalized Superstreet with its neighboring intersections on the same corridor.

THANKS FOR YOUR TIME

HAPPY TEACHER'S DAY

www.fabuloussavers.com