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To contend with congestion and spillback on commuting arterials, serving as connectors
between freeway and surface-street flows, this paper presents three multi-path progres-
sion models to offer progression bands for multiple critical path-flows contributing to
the high volume in each arterial link. The first proposed model is a direct extension of
MAXBAND under a predetermined phasing plan, but using the path-flow data to yield
the progression bands. The second model further takes the phase sequence at each inter-
section as a decision variable, and concurrently optimizes the signal plans with offsets
for the entire arterial. Due to the competing nature of multi-path progression flows over
the same green duration, the third model is proposed with a function to automatically
select the optimal number of paths in their bandwidths maximization process. The results
of extensive simulation studies have shown that the proposed models outperform conven-
tional design methods, such as MAXBAND or TRANSYT, especially for those arterials with
multiple heavy path-flows. The research results from this study have also reflected the
need to collect more traffic pattern data such as major path-flow volumes, in addition to
the typical intersection volume counts.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Providing two-way signal progression for congested arterials has long been viewed by traffic professionals as one of the
most effective control strategies. Over the past several decades, researchers in the traffic control community have proposed a
variety of signal progression models (Morgan and Little, 1964; Little, 1966) to maximize the progression bands for the target
movements. Depending on the selected measures of effectiveness (MOEs), most of those existing studies have made impres-
sive contributions on mitigating arterial traffic congestion. The effectiveness of all progression-based models, in general, are
conditioned on the common traffic pattern where through traffic constitutes the primary volume on the arterial, and con-
sequently turning flows are not the main concern of the signal design. However, for many arterials serving as the connectors
between freeway commuting flows and urban traffic networks, the traffic volumes, that need to take these paths comprising
both turning and through movements, are likely to be at the same level or even higher than the through volume along the
arterial. Thus, depending on the required turning volume at each arterial intersection, the conventional progression design
for through traffic flows may not be adequate to contend with the potential queue spillback and resulting stop-and-going
conditions, especially for arterials having a short link and bay length between intersections.
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Fig. 1a. An arterial segment and volume distribution in Chupei, Taiwan.
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Fig. 1a presents an example of such traffic systems in Chupei, Taiwan, where the arterial segment comprising three inter-
sections to connect a congested commuting freeway and urban network. The heavy turning volumes from-or-to the on-ramp
and off-ramps are in conflict with through traffic, and the design of conventional two-way progression often yields both
overflow at turning bays and consequently a gridlock for the entire network. A further field survey and analysis has revealed
that the traffic patterns along the arterial segment are the collective manifestation of five congested path-flows. As shown in
Fig. 1b, Path-1 flows from Node 4 to Node 11 exhibit the highest volume (702 vph), and all vehicles along this path need to
first manipulate a turning movement and then join the through traffic on the main arterial. Other primary path-flows,
including Path-2 (Node 5 to Node 8), Path-3 (Node 4 to Node 9), and Path-4 (Node 7 to Node 5) also share the common fea-
tures of having heavy turning volume to merge to the through traffic flows. Moreover, traffic flows on those outbound paths
(Paths 1, 2, 3) are in conflict with those inbound paths (Paths 4, 5), inevitably causing the conventional design of two-way
progression ineffective. Hence, how to smooth traffic movements on such a congested arterial that serves as a connector
between a commuting freeway and primary trip-destination locations is an imperative issue in design of effective urban traf-
fic control.

In review of the literature on arterial traffic control, one may classify most existing studies into two distinct categories:
maximizing traffic progression and minimizing total vehicle delay. The core logic of most studies in the former category is to
synchronize signals of a common cycle length with optimized offsets on an arterial to facilitate the movement of vehicles
over consecutive intersections. Morgan and Little (1964) are the pioneers who first presented a model to maximize the total
two-way progression bandwidth on an arterial. Following the same principle, Little (1966) further proposed an advanced
model to concurrently optimize the common cycle length, progression speeds, and offsets with integer programming. An
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enhanced version of this model, named MAXBAND, was later developed by Little et al. (1981) to account for left-turn treat-
ments and the impact of initial queues.

Grounded on the core logic of MAXBAND, Gartner et al. (1991) formulated a bandwidth optimization model, named MUL-
TIBAND, to reflect the need of different bandwidths for links with different volumes. For the same purpose but with different
formulations, Chaudhary et al. (2002) also developed a progression optimization program, named PASSER. To ensure the
effectiveness of the optimized progression control, Tian and Urbanik (2007) developed a partition technique to facilitate
the progression on the more important direction and keep sufficient green-band within the subsets of intersections. To
account for the progression time uncertainty, Li (2014) proposed a set of formulations to assure the robustness of offsets
for signal synchronization.

Besides those studies focused on the signal progression design at arterial level, some researchers also extended the mod-
els to grid networks. For example, Chang et al. (1988) implemented the MAXBAND model to a multi-arterial closed network
and developed an optimization program, named MAXBAND-86. Similarly, another network version named MULTIBAND-96
was developed by Stamatiadis and Gartner (1996). However, such extensions may significantly increase the computation
complexity due to the expanded size of integer variable set. To overcome this problem, Gartner and Stamatiadis (2002,
2004) proposed a two-step solution procedure that can improve the computing efficiency of existing progression models.
Their proposed first step is to select a set of priority routes, each carrying a large volume, and then subsequently design sig-
nal progression for each selected priority route. The second step is to solve the progression optimization for the entire net-
work by freezing the decision variables associated with each selected route. Following the same procedures to test each
priority route in the set, one can compare its resulting objective function and then determine the optimal solution. Notably,
this model was designed to generate green bands to traffic movements along those key routes rather than solely along the
arterial. In design of signals for diverging diamond interchanges (DDI), Yang et al. (2014) proposed a progression model
which can concurrently provide green bands to the off-ramp flows and local through traffic. However, since DDI are operated
with simple two-phase signals, such a signal-progression model is only applicable for DDI’s unique geometric features and
limited intersections.

Existing studies in the second category focused mainly on minimizing the total delay for intersections within the control
boundaries, where TRANSYT family (Robertson, 1969; Wallace et al., 1988), the simulation-based program, is the most com-
monly adopted tool by the traffic control community. With the similar simulation–optimization solution method, traffic
researchers have also produced various models for design of arterial traffic signals. Examples of such studies include a set
of mesoscopic optimizers by Yun and Park (2006) and Stevanovic et al. (2007); a GA-based method to identify cycle length,
green splits, offsets, and phase sequences by Hadi and Wallace (1993) and Park et al. (1999).

In the same category of delay minimization but not using simulation, a variety of signal optimization is available in the
literature (e.g., Aboudolas et al., 2010; Li, 2012). For example, to prevent intersection blockage, Liu and Chang (2011) pro-
posed an optimization model to remove the blocking effects at local arterials. D’Ans and Gazis (1976) and Papageorgiou
(1995) promoted the use of store-and-forward control models to perform real-time signal optimization. Kashani and
Saridis (1983) offered a set of queue-and-dispersion models for arterial signal optimization. Yin (2008) and Yang et al.
(2013) developed a robust optimization model to design pre-timed signal timings.

Note that all aforementioned studies, despite their significant contributions in traffic signal control, are mainly designed
to minimize the delay or maximize the progression for through traffic flows over the arterial segment which is implicitly
assumed to have the highest volume among all traffic movements. However, for commonly-observed arterials shown in
Fig. 1, congestion patterns are caused by the turning volumes on some links. Under such condition, the design geared to best
facilitate the through flows are likely to fall short of providing sufficient green times and proper offsets for those heavy path-
flows which need to take several turning exercises along with through movement to move out of the target arterial segment.
Hence, to prevent spillback or overflow on such arterials, one shall design the signal system based on the detected primary
traffic-flow paths, and maximize the progression for not only the through traffic but all path-flows with significant volume.

In addition, due to the competing nature among all heavy-volume paths, an effective signal plan for arterial with multi-
path flow patterns shall consider not only the optimized offsets for path flows, but also the optimal signal phase sequence at
each intersection so that the competition of green bands between different paths can be minimized and the available green
times can be fully utilized. This is quite different from the existing studies on arterial signal progression, where the primary
decision variable is the set of offsets to maximize the progression bandwidth for through traffic flows. Grounded on the same
notion as in Gartner and Stamatiadis (2002, 2004) and Yang et al. (2014), this paper presents three path-based progression
models, proposed to account for multiple critical issues that need to be tackled in design of an effective progression system
for congested arterials comprising complex traffic flow patterns. The proposed models have the following key features: (1)
offering the green bandwidth along each traffic path, based on the phasing plans at both upstream and downstream inter-
sections; (2) concurrently providing the phase sequence optimization at each intersection; and (3) accounting for the green-
band competition between critical paths and identifying the optimal number of path-flows for progression operations.
2. Modeling methodology

In design of a new model to contend with multi-path arterial traffic patterns, this study starts with investigation of the
fundamental two-way progression concept.
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2.1. Two-way progression modeling concept

As noted in the literature, the pioneering work, MAXBAND, offers a rigorous method to concurrently generate the offsets
between adjacent signals, optimize the prevailing speed at each link, and determine the proper left-turn phases. The key
model variables in Little et al. (1981) are shown in Fig. 2, and their primary formulations are quoted below:
Maxðbþ k�bÞ ð1Þ

s:t:ð1�qÞ�b P ð1�qÞqb ð2Þ

1=C2 6 z6 1=C1 ð3Þ

wi þ b6 1� ri 8i¼ 1; . . . ;n ð4Þ

�wi þ �b6 1��ri 8i¼ 1; . . . ;n ð5Þ

ðwi þ �wiÞ � ðwiþ1 þ �wiþ1Þ þ ðti þ�tiÞ þ diLi � diLi �mi ¼ ðriþ1 � riÞ þ ðsi þ siÞ þ diþ1Liþ1 � diþ1Liþ1 8i¼ 1; . . . ;n�1

ð6Þ

ðdi=f iÞz6 ti 6 ðdi=eiÞz 8i¼ 1; . . . ;n� 1 ð7Þ

ð�di=
�f iÞz6 �ti 6 ð�di=�eiÞz 8i¼ 1; . . . ;n� 1 ð8Þ

ðdi=hiÞz6 ðdi=diþ1Þtiþ1 � ti 6 ðdi=giÞz 8i¼ 1; . . . ;n�2 ð9Þ

ð�di=
�hiÞz6 ð�di=

�diþ1Þ�tiþ1 ��ti 6 ð�di=�giÞz 8i¼ 1; . . . ;n�2 ð10Þ

b; �b; z;wi; �wi; ti;�ti P 0 8i¼ 1; . . . ;n ð11Þ

mi integer; di;di binary integers 8i¼ 1; . . . ;n ð12Þ
Parameters included in above formulations are: ri, the common red time at signal i; LiðLiÞ, the time allocated to the left-
turn movements; C1 and C2, the boundaries of the cycle length; ei; f ið�ei;

�f iÞ, the lower and upper limits for the outbound
(inbound) speeds; gi;hið�gi;

�hiÞ, the lower and upper limits for the outbound (inbound) speed change; q, the preference
parameter.

Decision variables include: bandwidth ðb; �bÞ, cycle length (z), time between the start of a green phase and the boundary
of its green band ðwi; �wiÞ, prevailing speed ðti;�tiÞ, and integer variables ðdi; di;miÞ. Particularly, different values of the binary
variables, di and di, can result in four possible phase designs to accommodate major arterial flows: outbound left leads and
inbound left lags; outbound left lags and inbound left leads; outbound (or inbound) left leads; and outbound (or inbound)
left lags.

The objective function (1) for MAXBAND is to maximize the weighted sum of the two-way bandwidths. Constraint (2)
allocates the progression preference to either the inbound or outbound direction. Constraint (3) limits the upper and lower
bounds of the selected cycle length. The directional interference constraints in Eqs. ((4) and (5)) can ensure the green
bandwidth to be within the available green time. The loop integer constraint in Eq. (6) is specified to guarantee that the
signals will not cause traffic flows to stop in the green bands. The variation of travel times (a proxy of speed) is constrained
by Eqs (7)–(10).
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2.2. Critical issues in a multi-path progression model

Based on the formulation of MAXBAND, one can note that such two-way progression model can only optimize the
sequence of those phases dealing with major arterial flows. In contrast, any models designed for multi-path flows such as
those comprising turning movements from/to side streets will certainly need a more advanced phase sequence optimization
function.

For example, Fig. 3 shows an illustrative arterial that consists of three critical traffic paths. Aside from the through path
(Path 1), turning flows along Path 2 will join the arterial via the side street at intersection-3 and traffic along Path 3 will leave
the arterial to the side street at intersection-2. Given one phase sequence design, the green bandwidth along each path is
presented in Fig. 3(a). However, after optimizing phase sequence at each intersection, the green bandwidths along all three
paths increase significantly, as shown in Fig. 3(b). Based on this example, it is noticeable that a multi-path progression model
shall account for both major arterial and cross street flows when optimizing phase sequences.

In addition to the phase sequence optimization, the loop integer constraint (Eq. (6)) in the MAXBAND which ensures that
both through directions have non-zero bands (see Fig. 4(a)) also needs to be extended. This is due to the fact that such con-
straints in a multi-path progression system may result in near-zero or negligible bandwidths along some paths (see
Fig. 4(b)). Furthermore, due to the competing nature of green bands, some path-flows may have to encounter the case shown
in Fig. 4(c) and their loop integer constraints will not be satisfied. Under such conditions, the formulations for entire multi-
path progression may yield an infeasible solution. Hence, extensions shall be made to overcome this problem in multi-path
progression models.

In brief, an effective arterial signal model, grounded on the logic of MAXBAND, for multi-path progression needs to explic-
itly account for the following critical issues: (1) using a proper multi-phase plan for the path-based progression; (2) concur-
rently optimizing the signal phase sequence and offsets; and (3) effectively eliminating some infeasible path-flows so as to
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Table 1
Key notations.

Notation Description

uiðuiÞ The weighting factor for the outbound (inbound) path i
bið�biÞ The green bandwidth for outbound (inbound) path i
be The effective green bandwidth in seconds
n The reciprocal of cycle length
gi;kð�gi;kÞ The maximum green duration that the outbound (inbound) path i can obtain at intersection k
wi;kð �wi;kÞ The part of a green duration before (after) the green band for outbound (inbound) path i at intersection k
XðXÞ The set of outbound (inbound) paths
ri The set of intersections passed by path-flow i
hk The offset of intersection k
ri;k The total red duration at the left side of the green band for path i
�ri;k The total red duration at the right side of the green band for path i
tk The travel time between intersection k and k + 1
si;kðsi;kÞ The initial queue clearance time along path i at intersection k
ni;kð�ni;kÞ Integer variables to represent the number of signal cycles
/l;k The duration of phase l at intersection k
M A large positive number
q A parameter that can indicates the preference of inbound or outbound paths
xi;j;k Binary decision variable which represents the phase sequences at intersection k
yið�yiÞ Binary decision variable which indicates the selection of critical paths for progression
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maximize the sum of weighted bandwidths for all identified paths, and to yield the maximal benefit for the total flows in the
target arterial.

3. Model formulation

This section presents three sets of formulations, where the first is a direct-extension of MAXBAND for the multi-path sce-
nario, and the second highlights the feature of concurrently optimizing phase sequences and offsets. An enhancement of the
second model, designed to eliminate the likelihood of generating some non-productive progression bands, will also be dis-
cussed. Note that the non-productive band is defined in this study as the bandwidth that is not sufficient to accommodate a
prespecified number of vehicles (e.g., 3 vehicles). Key notations in these three proposed models are shown in Table 1 and
Fig. 5.

3.1. Model I: optimize offsets only for all target path flows

As discussed previously, with the identified multi-path traffic flow patterns, phase plans, and sequences, one can directly
extend MAXBAND with the following objective function for offset optimization:
Max
X

i

ðuibiÞ þ
X

i

ðui
�biÞ ð13Þ
Similar to MAXBAND, the interference constraints for a multi-path progression system are given as follows
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0 6 wi;k þ bi 6 gi;k 8i 2 X; 8k 2 ri ð14Þ
0 6 �wi;k þ �bi 6 �gi;k 8i 2 X; 8k 2 ri ð15Þ
Note that the formulations for MAXBAND are based on a signal plan for two-way progression. Hence, the loop integer con-
straint (Eq. (6)) can be obtained by substituting those two progression constraints for inbound and outbound through paths.
However, due to the complexity of the multi-path progression nature, one shall explore new constraints to represent the
progress of green bands for all identified path flows, rather than directly using the same loop integer constraints in MAX-
BAND. In this study, a set of alternative progression constraints are derived to represent the progress of an outbound green
band from point A to point B (see Fig. 5):
hk þ ri;k þwi;k þ tk þ ni;k ¼ hkþ1 þ ri;kþ1 þwi;kþ1 þ si;kþ1 þ ni;kþ1 8i 2 X; 8k 2 ri ð16Þ
Similarly, for traffic along the inbound paths, one can use the following equation to represent the progress of the green band
from point C to point D as shown in Fig. 5:
�hk þ �ri;k þ �wi;k � si;k þ �tk þ �ni;k ¼ �hkþ1 þ �ri;kþ1 þ �wi;kþ1 þ �ni;kþ1 8i 2 X; 8k 2 ri ð17Þ
Given the green durations for all intersections, one can then compute the value of ri;kð�ri;kÞ and gi;kð�gi;kÞ with the pre-deter-
mined phase sequences. Hence, the Model I (M1) could be summarized as follows:
M1 : Max
X

i

ðuibiÞ þ
X

i

ðui
�biÞ

s:t: Eqs:ð14Þ—ð17Þ
bi;wi;k;

�bi; �wi;k P 0 8i 2 XþX; 8k 2 ri

ni;k; �ni;k are integer variables
Note that the M1 model assumes that the travel speeds on all links are predetermined. To concurrently optimize the pro-
gression speeds, one can simply add additional constraints shown in Eqs. ((7)–(10)).

3.2. Model II: Concurrently optimize phase sequences and offsets

As shown in Fig. 2, changing phase sequence at each intersection can minimize the green band competition between dif-
ferent path flows. To optimize such sequences, one can first define a set of binary variables as follows:
xl;m;k ¼
1; if phase l is before phase m within the same cycle of intersection k;

0; o:w:

�
ð18Þ
To ensure the operational feasibility of each produced phase sequence, this study has further specified the following con-
straints related to xl,m,k:
xl;l;k ¼ 0 8l; 8k ð19Þ
xl;m;k þ xm;l;k ¼ 1 8l – m; 8k ð20Þ
xl;n;k P xl;m;k þ xm;n;k � 1 8l – m – n; 8k ð21Þ
xl;n;k þ xn;m;k ¼ 1 l – m – n ð22Þ
xl;m;k ¼ 1 l – m ð23Þ
xl;m;k � xl0 ;m0 ;kþ1 ¼ 0 8k ð24Þ
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Note that Eq. (20) is based on the definition of xl,m,k and Eq. (20) indicates that phase l is either before or after phase m. To
prevent a ‘‘sub-loop’’ in a phase sequence, the model must ensure that ‘‘if phase l is before phase m (xl,m,k = 1) and phase m is
before phase n (xm,n,k = 1), then phase l is before phase n (xl,n,k = 1)’’. The mathematical formulations are shown in Eq. (21) for
such relations. Eqs. ((22)–(24)) are three optional constraints. Eq. (22) ensures that phase l and m in a sequential order. Eq.
(23) indicates that phase l is ahead of phase m, and Eq. (24) is functioned to guarantee the consistence of phase sequence
designs between adjacent intersections.

To describe the relations between signal phases and path-flows, one can further define a set of binary parameters as
follows:
bi;l;k ¼
1; if path i obtains green in phase l at intersection k;

0; o:w:

�
ð25Þ
Hence, one can compute the available green duration for the progress of an outbound (inbound) path i, gi;kð�gi;kÞ with the fol-
lowing equations:
gi;k ¼ bi;l;k/l;k 8i 2 X; 8k 2 ri ð26Þ

�gi;k ¼ bi;l;k/l;k 8i 2 X; 8k 2 ri ð27Þ
Then, the interference constraints can be re-written as follows:
0 6 wi;k þ bi 6
X

l

bi;l;k/l;k 8i 2 X; 8k 2 ri ð28Þ

0 6 �wi;k þ �bi 6
X

l

bi;l;k/l;k 8i 2 X; 8k 2 ri ð29Þ
Note that in M1 model, the red duration of path i before (after) its available green time, ri;kð�ri;kÞ, can be directly computed
since the phase sequences are provided. However, by relaxing the phase sequences as decision variables, the values of
ri;kð�ri;kÞ will be varied with the selected phase sequence. Hence, to ensure the progression constraints to function properly
as shown in Eqs. ((16) and (17)), one shall establish the relations between phase sequences, xl;m;k, and red durations
ri;kð�ri;kÞ. A set of constraints for such a need are given below:
ri;k 6
X

l

bi;m;kxl;m;k � /l;k þMð1� bi;m;kÞ 8i 2 XþX;8k 2 ri; 8m ð30Þ

�ri;k 6
X

l

bi;m;kxm;l;k � /l;k þMð1� bi;m;kÞ 8i 2 XþX; 8k 2 ri;8m ð31Þ

ri;k þ �ri;k þ
X

l

bi;l;k � /k;n ¼ 1 8i 2 XþX; 8k 2 ri ð32Þ
where M is a large positive number. The second term at the right side of Eq. (30) is used to dominate other variables when
path i cannot receive green in phase m (bi,m,k = 0). If path i can receive green in phase m (bi,m,k = 1), the first term in Eq. (30)
will function to compute the time duration before phase m. Following the similar logic, the first term in the right side of Eq.
(31) is used to compute the duration after phase m if bi,m,k = 1. Since path i may receive green in multiple consecutive phases,
Eqs. ((30) and (31)) will ensure that ri;kð�ri;kÞ is taking place prior (after) the first (last) phase that is given green to path i. Also
note that the third term in Eq. (32) is the total green duration that path i can obtain within one cycle. Hence, Eqs. ((30)–(32))
together can force ri;kð�ri;kÞ to equal the red duration before (after) the green time of path i, which corresponds to its definition.
A detailed explanation of constraints (30)–(32) is given in the Appendix-A.

In brief, the M2 model could be summarized as follows:
M1 : Max
X

i

ðuibiÞ þ
X

i

ðui
�biÞ

s:t: Eqs: ð16Þ and ð17Þ
Eqs: ð19Þ—ð24Þ
Eqs: ð28Þ—ð32Þ
bi;wi;k;

�bi; �wi;k > 0 8i 2 XþX; 8k 2 ri

ni;k; �ni;k; xi;j;k are integer variables
3.3. Model III: Select part of paths for progression and prevent infeasible solutions

Note that both the M1 and M2 models assume that every selected critical path can receive a green band on the arterial,
regardless of the fact that some bandwidths may be close to zero. In other words, the progression constraints (16) and (17)
will ensure that every selected path can obtain a bandwidth under the conditions in either Fig. 4(a) or (b). Obviously,
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providing a near-zero green band is practically non-productive, and removing the constraints of those paths may offer a larg-
er bandwidth to other primary paths. Also, with an increase in the number of paths and intersections, some paths may inevi-
tably encounter the case in Fig. 4(c), due to their competing for progression. Consequently, both the M1 and M2 models will
yield no feasible solutions under such condition.

To tackle such issues, we have further defined a set of new decision variables to automatically select proper paths for
green-band maximization in M3 model:
yið�yiÞ ¼
1; if path i obtains signal progression with non� zero green band
0; o:w;

�
ð33Þ
Then, the following additional constraints are derived to remove those paths without progression from the optimization
process:
bi 6 yi ð34Þ
�bi 6 �yi ð35Þ
bi P ben�Mðyi � 1Þ ð36Þ
�bi P ben�Mð�yi � 1Þ ð37Þ
Note that Eqs. ((34) and (35)) are used to force the bandwidth of path i to zero if it is removed from progression need (yi = 0)
and Eqs. ((36) and (37)) are functioned to guarantee the minimum effective bandwidth is satisfied.

For those outbound paths without progression, one needs to relax their corresponding progression constraints to ensure
the feasibility of the optimization model. To do so, one can rewrite the set of progression constraints in Eq. (16) as follows:
hk þ ri;k þwi;k þ tk þ ni;k P hkþ1 þ ri;kþ1 þwi;kþ1 þ si;kþ1 þ ni;kþ1 �Mð1� yiÞ 8i 2 X; 8k 2 ri ð38Þ
hk þ ri;k þwi;k þ tk þ ni;k 6 hkþ1 þ ri;kþ1 þwi;kþ1 þ si;kþ1 þ ni;kþ1 þMð1� yiÞ 8i 2 X; 8k 2 ri ð39Þ
Since M can dominate any variable in the constraints, Eqs. ((38) and (39)) will become ineffective when yi equals zero.
Grounded on the same logic, one can derive the following constraints for the inbound paths by modifying Eq. (17) as

follows:
� hk þ �ri;k þ �wi;k � si;k þ �tk þ �ni;k P �hkþ1 þ �ri;kþ1 þ �wi;kþ1 þ �ni;kþ1 �Mð1� �yiÞ 8i 2 X; 8k 2 ri ð40Þ
� hk þ �ri;k þ �wi;k � si;k þ �tk þ �ni;k 6 �hkþ1 þ �ri;kþ1 þ �wi;kþ1 þ �ni;kþ1 þMð1� �yiÞ 8i 2 X; 8k 2 ri ð41Þ
Note that under some extreme scenarios, the enhanced model may sacrifice all paths from one direction (e.g. inbound) and
offers only a one-direction progression if they are specified with larger weighting factors. Hence, similar to the constraint (2)
in MAXBAND, the following constraint should be satisfied:
ð1� qÞ
X
i2X

�bi P ð1� qÞq
X
i2X

bi ð42Þ
In brief, the model III (M3) could be summarized as follows:
M3 : Max
X

i

ðuibiÞ þ
X

i

ðui
�biÞ

s:t: Eqs: ð19Þ—ð24Þ
Eqs: ð28Þ—ð32Þ
Eqs: ð34Þ—ð42Þ
bi;wi;k;

�bi; �wi;k P 0 8i 2 XþX; 8k 2 ri

ni;k; �ni;k; xi;j;k; yi; �yi are integer variables
Note that all above three models, M1, M2 and M3, are formulated as mixed-integer-linear-programming problems, which
can be solved with existing algorithms such as Branch-and-Bound.

4. Numerical examples

In this section, all mixed-integer-linear-programming problems are solved in Lingo 6.0 which is operated on a PC with
3 GHz CPU, 4 GB RAM, and Windows 7 operating system.

4.1. Case study 1

The test network used to evaluate the proposed models consists of an arterial of six intersections. As shown in Fig. 6, six
critical paths have been identified along the arterial, where Paths 1, 2, and 3 are for outbound flows and the remaining paths
are for inbound flows.
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Fig. 6. Illustration of the test arterial.
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Fig. 7. Signal timings and the initial phase sequences.
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The phasing plan, signal timings, and original phase sequence at each intersection are presented in Fig. 7. The common
cycle length is set to be 180 s. The weighting factors for the six paths are set as 0.2, 0.4, 0.1, 0.5, 0.1, and 0.3, respectively.

Using the signal plans shown in Fig. 7 and assuming no initial queues on all links, the first model, M1, is implemented to
optimize the offset at each intersection. The resulting green bandwidth for each path is presented in Fig. 8, where paths 5 and
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6 have relatively wider green bands than those for Paths 1–4. Notably, the bandwidth for path 4 is zero and its green band is
actually converged into a single line. The sum of all weighted bandwidths for this signal plan is 20.1 s.

By specifying the phase sequence at each intersection as a decision variable, Fig. 9 shows the resulting signal plan
obtained by M2 model. Comparing with the results from M1 model, the bandwidth for Paths 1, 3 and 5 are nearly reduced
to zeroes and the bandwidth of Path 6 remains unchanged. The bandwidths for Paths 1 and 4 have been increased. The sum
of weighted bandwidths for this signal plan is 28.8 s, which is larger than the one produced by M1 model.

From both Figs. 8 and 9, one can observe that the bandwidths of several paths are close to zeroes, which are not useful in
practice. Moreover, incorporating the progression constraints of those paths in the optimization models will reduce the fea-
sible solution set which will in turn impact the progression results of the remaining paths. The results from the M3 model,
designed to circumvent the limitations of the M1 and M2 models, are shown in Fig. 10, whose five out of six paths are con-
currently accounted for progression and no near-zero green bands are found in this case. Due to competing with other paths,
Path 3 has been automatically removed from progression and its corresponding constraints have become ineffective during
the solution process. The sum of weighted bandwidths for this signal plan is 50.7, which is much larger than the results from
the M1 and M2 models.

To further compare the operational performances of the target arterial under the control of these three models, this study
has further implemented VISSIM for evaluations. Based on the simulation results summarized in Table 2, one can conclude
that the M3 model with additional critical constraints can outperform the other two models in reducing average path-flow
delay, average number of stops and improving average travel speed.
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Fig. 10. The resulting green bands obtained by Model III. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)



Table 2
Arterial performance under the control of different models.

MOEs M1 model M2 model M3 model

Average path-flow delay 45.2 s 41.8 s 37.5 s
Average # of stops 0.981 0.967 0.895
Average speed 34.7 km/h 36.4 km/h 40.3 km/h
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Fig. 11. The general information of the study site.
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4.2. Case study 2

To evaluate the potential of the proposed models for real-world applications, this study has further selected an arterial
segment of three intersections in Chupei, Taiwan for case study. As shown in Fig. 11(a), during PM peak hours, heavy traffic
flows will take the off-ramp to enter the Guanming 6th Rd, which constitutes several turning paths of heavy volumes on the
arterial along with the local through traffic.

To analyze the demand patterns at the study site, the research team at the National Chiao Tung University (NCTU) in a
project sponsored by Ministry of Communications and Transportation, has completed a field survey from 16:30 to 21:30
on April 24, 2013. Based on the collected data, they also performed an OD estimations and supplemental surveys on the tar-
get arterial segment, and identified five critical paths (see Fig. 11(b)). Table 3 presents the demand patterns at each inter-
section for the case study.

As shown in the previous section, since the M3 model can outperform the other two models, this field study has tested
only this model. Based on the volumes along those five paths, the following factors, 0.5, 0.4, 0.3, 0.3, and 0.1, are set for the
maximization of progress bands. Also, for comparison, the progression plans generated by the following three models are
adopted in this study:

� MAXBAND-1: a two-way progression model designed for traffic along local arterials (Little et al., 1981).
� MAXBAND-2: a two-way progression model designed for traffic along the major route flows (i.e., Path-1 and Path 5).
� TRANSYT 7-F: an optimization model with the objective of minimizing the pre-defined performance Index (e.g., delay,

number of stops).

Table 4 and Fig. 12 reports the signal plans obtained from all tested models. The cycle length in all plans is set to be 180 s;
the initial phase sequence, phasing designs, and green times are shown in Fig. 11(b). Note that the shifts of green bands in
Fig. 12 caused by the impact of initial queues. Similar to the MAXBAND model, the initial queue clearance time si;kðsi;kÞ are
estimated with those uncoordinated flows.

To evaluate the network performance produced by different optimization models, this study selected VISSIM as the
simulation platform. Recognizing that a simulated system is meaningful only if it can faithfully reflect actual traffic patterns,
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this study has performed the calibration by minimizing the differences between simulated and field-collected queues and
flow rates.

Based on the simulation results, Fig. 13 presents the time-dependent travel time distribution along each critical path.
Compared with the plans from MAXBAND-1, MAXBAND-2 and TRANSYT 7-F, the proposed M3 model can produce much
lower travel time along Path 1, as evidenced by the results in Fig. 13a. This is due to the fact that the movement along Path



Table 3
The three-hour demand patterns for the three intersections.

Time Intersection Westbound Northbound Eastbound Southbound

L T R L T R L T R L T R

17:00–18:00 1 / 924 / 1090 / 1073 518 976 / / / /
2 508 1506 / / / / / 907 / 587 / 672
3 332 1056 790 / 274 451 82 834 91 729 272 74

18:00–19:00 1 / 786 / 1050 / 1011 441 968 / / / /
2 418 1418 / / / / / 857 / 551 / 729
3 363 962 822 / 288 371 88 832 86 761 354 64

19:00–20:00 1 / 665 / 995 / 968 443 840 / / / /
2 269 1391 / / / / / 921 / 362 / 403
3 287 872 635 / 238 300 82 653 91 658 286 69

Table 4
The resulting signal plans by different models.

Model Intersection 1 Intersection 2 Intersection 3

Phase sequence Offset (s) Phase sequence Offset (s) Phase sequence Offset (s)

MAXBAND-1 [1] [2] [3] 0 [1] [2] [3] 21 [1] [2] [3] 92
MAXBAND-2 [1] [2] [3] 17 [1] [2] [3] 137 [1] [2] [3] 0
7-F [1] [3] [2] 14 [1] [2] [3] 157 [1] [2] [3] [4] 34
M3 [1] [3] [2] 0 [2] [1] [3] 3 [2] [1] [3] [4] 17

Note: the IDs of the phases are shown in Fig. 11(B).

Fig. 13a. The time-dependent travel time along Path 1.

Fig. 13b. The time-dependent travel time along Path 2.
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1 has the largest weighting factor in the M3 model and thus receives the progression priority. Also, MAXBAND-2 can out-
perform MAXBAND-1 since it takes Path-1 as the outbound route for designing progression. The travel times produced by
TRANSYT 7-F are higher than those by the two MAXBAND models.



Fig. 13c. The time-dependent travel time along Path 3.

Fig. 13d. The time-dependent travel time along Path 4.

Fig. 13e. The time-dependent travel time along Path 5.

108 X. Yang et al. / Transportation Research Part C 53 (2015) 93–111
Fig. 13b shows the comparison of travel time for Path 2. Obviously, the other three models outperform MAXBAND-1 with
respect to this path. Based on the trajectory of Path 2, one can observe that vehicles will make left-turns at the second inter-
section and then leave the arterial. Notably, with the MAXBAND-1 model, the green bands are assigned to the through paths
only, so vehicles along Path 2 would consequently experience higher delays. However, in MAXBAND-2, traffic along Path 2
can occasionally receive a certain green band even though it is not accounted for in the model.

As shown in both Figs. 13c and 13d, the M3 model can also outperform the other three models since it has also offered
green bands to Path 3 and Path 4. An interesting observation revealed in Fig. 13e is that the travel time differences along Path
5 by different models are not significant, while MAXBAND-1 model has produced a much wider green band along this path
than with the other three models. By analyzing the simulation results, we have observed that most traffic volumes along
Path 5 have only utilized half of the green band due to its low flow rate. Hence, the provided green band by MAXBAND-1
model has exceeded the need of traffic volume along Path 5, which results in the insignificant improvement of travel time
as shown in Fig. 13e.



Table 5
Arterial performance under the control of different models.

MOEs MAXBAND-1 MAXBAND-2 TRANSYT 7-F M3 model

Average delay 54.3 s 50.1 s 55.4 s 47.6 s
Average # of stops 0.972 0.936 1.047 0.884
Average speed 34.7 km/h 35.4 km/h 31.3 km/h 40.5 km/h
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In conclusion, the proposed M3 model, as expected, can efficiently produce progress bands and less travel times for vehi-
cles along all identified critical paths. To further evaluate the progression-based signal plan over the entire network with
different MOEs, Table 5 summarizes the resulting average delays, average number of stops, and average speeds. Notably,
the proposed M3 model can produce the lowest delay compared with the other three models. The same trend could be found
for the average number of stops. Regarding the average speed, the M3 model can also yield significant improvement. In brief,
the proposed M3 model has the promising property of producing progression bands to arterials with heavy flow rates on
multiple paths, and the resulting signal plan can also achieve the control objective of minimizing vehicle delays and stops.
MAXBAND-2 can outperform MAXBAND-1 since it generated green bands to traffic movements along the key routes rather
than solely along the arterial.

5. Conclusions

Existing models or tools for arterial signal control, focusing either on maximizing the progression for two-way through
traffic flows or minimizing their total delay, cannot adequately account for some heavy-path flows that need to take multiple
turning movements along the arterial. Hence, providing the progression for not only the through traffic but also other paths
of heavy flows is essential in tackling the congestion causing by the overflows from turning bays or link blockage due to spill-
back in many congested commuting arterials.

This paper has presented a multi-path progression model to concurrently optimize the phase sequence at each intersec-
tion and the progression bands for some identified critical path-flows that constitute the complex traffic pattern in congested
urban arterials serving mainly as connectors between freeway traffic and surface-street flows. Different from the use of only
intersection traffic counts, the proposed model can take full advantage of identified path-flow information in each congested
link, and offer the progression for vehicles along each O-D path under the optimized phase sequence. Due to the competing
nature among identified path flows, the proposed model can further identify the set of productive progression paths, based
on the distribution of link volumes over each O-D path, and yield the optimal number of progression paths and bandwidths
for the target arterial.

The results of extensive numerical investigation with field data have confirmed that the proposed model clearly outper-
forms the conventional design methods, such as with MAXBAND or TRANSYT, especially for those arterials where heavy
path-flows from-and-to the freeway travel over only some of the arterial links but need to execute both left and right turns
from the available short turning bays. The research results from this study has also reflected the need to collect more traffic
pattern data such as major path-flow volumes, in addition to the typical intersection volume counts, in design of signal plans
for arterials suffering from heavy turning flows and their maneuvers between turning bays and travel lanes.

Further extensions along this line will be focused on advancing the proposed models to integrate with real-time local
adaptive control. The purpose is to ensure that the computed offsets and bandwidths can precisely accommodate the needs
of all real-time arriving path flows which may fluctuate from day to day.
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Appendix A

Considering a signal cycle with N phases at intersection k, one critical path i can receive the green within the phases
[pe,pe+s]. Here {pe} refers to the index of one particular phase at intersection k, thus its value may fall between [1,N] and:
pi – pj 8 i – j ðA1Þ
Hence, different combination patterns of {pe} can represent different phase sequences.
Proof the effectiveness of constraints (27)–(29)
Given the constraint (27):
ri;k 6
X

l

bi;m;kxl;m/l;k þMð1� bi;m;kÞ 8i 2 XþX; 8k 2 ri; 8m ð27Þ
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Fig. A1. (a) The phase diagram at intersection k.
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For the case shown in Fig. A1, it can give:
ri;k 6
X

l

0 � xl;m � /l;k þMð1� 0Þ ¼ M 8pm 2 ½p1; pe�1� ðA2Þ

ri;k 6
Xpm�1

l¼p1

1 � 1 � /l;k þ
XpN

pm

1 � 0 � /l;k þMð1� 1Þ ¼
Xpm�1

l¼p1

/l;k 8pm 2 ½pe; peþs� ðA2Þ

ri;k 6
X

l

0 � xl;m � /l;k þMð1� 0Þ ¼ M 8pm 2 ½peþsþ1; pN� ðA3Þ
Hence, the three sets of constraints together will give:
ri;k 6
Xpe�1

l¼p1

/l;k ðA3Þ
For the constraint (28), one can similarly obtain:
�ri;k 6
XpN

l¼peþsþ1

/l;k ðA4Þ
Also, constraint (29) gives:
ri;k þ �ri;k þ
Xpeþs

l¼pe

/k;n ¼ 1 ðA5Þ
Hence, the constraints (A3)–(A5) together can ensure:
ri;k ¼
Xpe�1

l¼p1

/l;k ðA6Þ

�ri;k ¼
XpN

l¼peþsþ1

/l;k ðA7Þ
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