

MUID

Maryland Unconventional Intersection/Interchange Design Analysis Tool

INTRODUCTION

- Maryland Unconventional
 Intersection/Interchange Design (MUID) Analysis Tool
- Developed by University of Maryland, College Park and MDOT SHA
- A tool to conduct a capacity/ queuing analysis as well as signal optimization for continuous flow intersection (CFI), diverging diamond interchange (DDI), and superstreet intersection (signalized RCUT)

MODULES

Planning Evaluation Module

- Queue length
- Queue/link length ratio
- Average delay
- Critical lane volumes
- Signal Optimization Module
 - Offset
 - Cycle length
 - Green split
 - Average delay
- Output Module
 - Shows input parameters, planning evaluation results and signal optimization results

PLANNING EVALUATION MODULE

Planning Evaluation Procedure

Identifying all factors contributing to the total delay and queue, including external factors such as demand, and internal factors such as intersection geometric features

Generating a comprehensive data set with all identified factors for simulating analysis

Build simulation models using VISSIM and Calibrate VISSIM parameters with field data
Random sampling of different demand scenarios

Deriving the quantitative relationships between performance measures and contributing factors

Estimating the impact of queues on the overall intersection performance and developing a set of statistical models for queues length prediction at each critical location

PLANNING EVALUATION MODULE

Planning Evaluation Results

Copyright ©2004-2019 ATTAP. All rights reserved.

Signal optimization Procedure

Calculate the CLV of each sub-intersection according to the phasing designs

Determine the common cycle length based on the CLV of the most congested subintersection

For each sub-intersection, *optimize the green ratio* of each phase with the objective of <u>maximizing the</u> <u>capacity of intersection</u>

Determine the critical traffic paths according to the demand pattern

Use <u>a modified MAXBAND model</u> to *provide progressions* to those critical traffic paths so as to optimize the offsets

SIGNAL OPTIMIZATION MODULE

Signal Optimization Results

INTERSECTION/INTERCHANGE DESIGNS

Cover different intersection/interchange designs

- Continuous Flow Intersection
 - CFI-T
 - Partial CFI(symmetrical)
 - Partial CFI(asymmetrical)
 - Full CFI
- Diverging Diamond Interchange
- Superstreet Intersection

INPUT DEMAND

- User-friendly Interface
 - Manually input demand or
 - Generate random demand

INPUT GEOMETRIC CHARACTERISTICS

User-friendly Interface

- Adopt the default geometry setting or
- Manually input geometric information

Show demand

Show link length

Copyright ©2004-2019 ATTAP. All rights reserved.

Show phase plan

Show queue length

Copyright ©2004-2019 ATTAP. All rights reserved.

Show Queue/Link length ratio

Show signal timing(s)

Generate a report with input and module output

