State of the Practice, Case Studies and Analysis Tools on Unconventional Intersection & Interchange Designs in Maryland

Saed Rahwanji and Minseok Kim Office of Traffic & Safety Maryland State Highway Administration

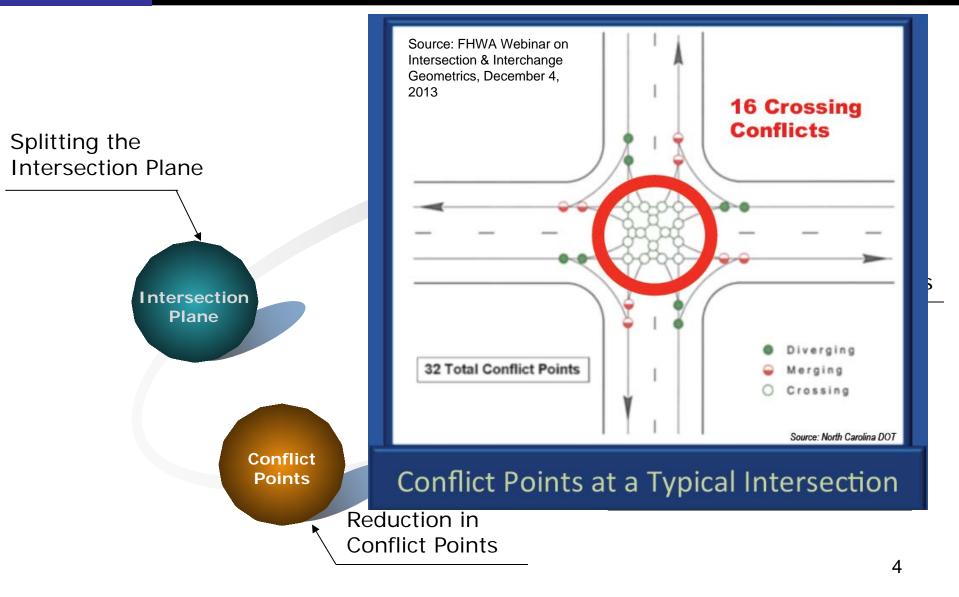
Hyeonmi Kim and Sungyoon Park Dept. of Civil & Environmental Engineering University of Maryland at College Park

July 22, 2014

What we have done & will keep doing

Informing, educating and sharing unconventional design concepts for interchanges and intersections

- Established the Applied Technology and Traffic Analysis Program (ATTAP)
 - Work in partnership with the University of Maryland to conduct in-depth research on highway design and traffic control
 - Provide internship opportunities to graduate students to obtain practical and technical knowledge in traffic engineering
- Propose and initiate other unconventional concepts to be studied during our planning and preliminary engineering alternative selection phases


What we have done & will keep doing

Informing, educating and sharing unconventional design concepts for interchanges and intersections

- Coordinate/conduct frequent workshops within our organization at Maryland State Highway Administration for our highway engineers
- Conduct regular meetings to inform and share updates on unconventional design concepts
- Engage senior leadership at Maryland State Highway Administration and conduct presentations for regional, out of state & international visitors
- Reach out and work with engineering consulting firms
- Developed and maintain an interactive and informative website (http://attap.umd.edu)

Design and operational strategies

PROMINENT UNCONVENTIONAL DESIGNS IN MARYLAND

1. Unconventional Designs in Maryland

- 2. Maryland J-turn Intersection
- 3. Continuous Green-T(CGT) Intersection

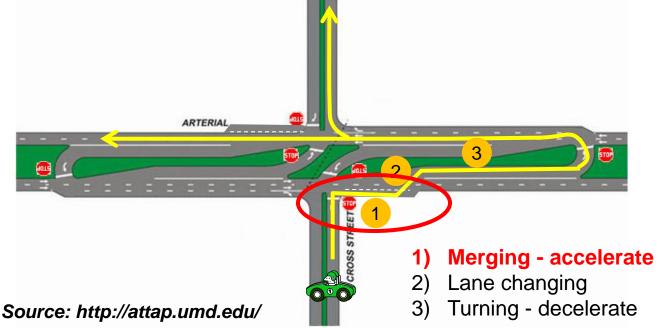
6

Unconventional Designs In Maryland

Locations of Selected Unconventional Intersections

Category	Design	Locations
At-grade &	Jughandle Intersection Superstreet Intersection Continuous Flow Intersection	 Hanover St. / Cromwell St., Baltimore MD 3 & Waugh Chapel Rd., Odenton MD 210 & MD 228, Accokeek US 1 & MD 200(to be opened in 2014)
Signalized	Continuous Green-T Intersection	 US 40 & Enchanted Forest, Ellicott City US 29 & Rivers Edge Rd., Columbia MD 139 & Chestnut Ave., Towson MD 100 & US 1, Elkridge
At-grade & Unsignalized	Maryland J-turn Intersection	 US 15 & Hayward Rd., Frederick US 15 & Willow Rd., Frederick US 15 & Biggs Ford Rd., Frederick US 15 & Sundays Ln., Frederick US 15 & College Ln., Emmitsburg US 15 & Old Frederick Rd., Emmitsburg US 301 & Main St. Queenstown US 301 & Del Rhodes Ave., Queenstown US 301 & Ruthsburg Rd., Centreville US 301 & Sudlersville Rd., Sudlersville US 301 & McGinnes Rd., Millington US 301 & Galena Rd., Galena
	Maryland T Intersection	 MD 235 & MD 6, Mechanicsville US 50 & Carmichael Rd., Queenstown MD 5 & Gallant Green Rd., Hughesville MD 5 & Old Leonardtown Rd., Hughesville Arundel Mills Circle & Mills Dr., Hanover
	Modern Painted Roundabout	1. US 50 & Thompson Creek Rd., Stevensville

Unconventional Designs In Maryland

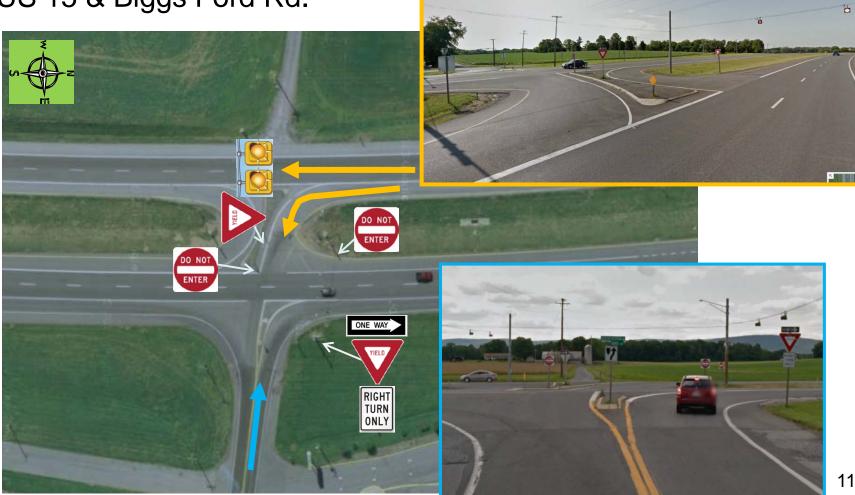

Locations of Selected Unconventional Interchanges

Category	Design	Locations
Grade-	Single Point Urban Interchange	 I-695 & MD 140, Pikesville MD 100 & MD 170, Severn US 29 & Cherry Hill Rd., Silver Spring MD 337 & MD 5, Camp Springs MD 200 & MD 650, Colesville
separated& Signalized	Single Loop Interchange	1. MD 140 & MD 940, Owings Mills
olghallzed	Tight Diamond Interchange	 MD 32 & MD 108, Columbia MD 100 & Coca Cola Dr., Hanover
	Diverging Diamond Interchange	1. MD 295 & Arundel Mills Blvd, Hanover
Grade- separated & Unsignalized	Double Roundabout Interchange	 MD 100 & MD 103, Elkridge US 29 & MD 216, Scaggsville

- Maryland J-Turn is an unsignalized superstreet design controlled by Stop or Yield signs.
- Left turns from the arterial can make direct left turns onto the cross street, but the cross-street thru and left turn movements must use the directional U-turn crossovers.

US 15 Corridor in Frederick County (6 locations)

US 301 Corridor in Eastern Shore (6 locations)


Acceleration Lane Length & U-Turn Crossover Spacing

Location		ıth of Lane (ft) (A)		rossover g(ft) (B)		
	Southbound	Northbound	S. Crossover	N. Crossover	Max	
US 15 @ Hayward Rd.	1,160	n/a	1,860	n/a	Min	
US 15 @ Willow Rd.	520	n/a	2,900	4,920		
US 15 @ Biggs Ford Rd.	n/a	466	4,920	1,618		
US 15 @ Sundays Ln.	510	n/a	1,618	2,804		RIAL A
US 15 @ College Ln.	537	663	1,900	2,166		
US 15 @ Old Frederick Rd.	556	470	1,945	2,358	ز	
US 301 @ Main St.	106	521	3,990	2,530	CROSS STREET	
US 301 @ Del Rhodes Ave.	350	320	2,530	1,337		
US 301 @ Ruthsburg Rd.	480	930	1,500	2,590		
US 301 @ Sudlersville Rd.	210	270	1,480	1,470		
US 301 @ McGinnes Rd.	250	460	1,470	1,470		N N
US 301 @ Galena Rd	222	248	1,475	1,327		W W E
Average	450	480	2,320	2,248		10 S

- Traffic Control, Signing and Marking
 - US 15 & Biggs Ford Rd.

Safety Benefits - Crash data

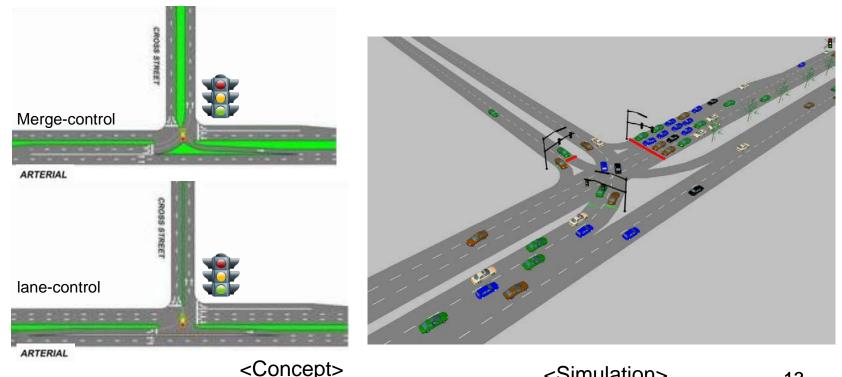
	A	t Intersect	ion	Intersection and Adjacent Segments			
Location	Before After (percent)			Before	After	Decrease (percent)	
U.S. 15 at Hayward							
Road	4.33	3.33	23	9.00	5.33	41	
U.S. 15 at Willow Road	1.67	0.33	80	4.67	7.67	-64	
U.S. 15 at Biggs Ford							
Road	4.33	1.33	69	7.00	6.33	10	
U.S. 15 at Sundays Lane	0.33	1.33	-300	3.33	5.00	-50	
U.S. 15 at College Lane	3.67	0.33	91	5.00	1.33	73	
U.S. 15 at U.S. 15							
Business	3.67	1.67	55	4.33	2.33	46	
U.S. 301 at Main Street	3.33	1.33	60	8.00	7.00	13	
U.S. 301 at Del Rhodes							
Avenue	7.00	1.00	86	7.67	3.33	57	
U.S. 301 at Galena Road	5.00	0.67	87	8 33	1.67	80	
Total	33.33	11.33	66	57.33	40.00	30	

Table 30. Before-After Average Annual CrashSummary for Maryland J-turn in the 3-yearshort period (number of crashes/year)

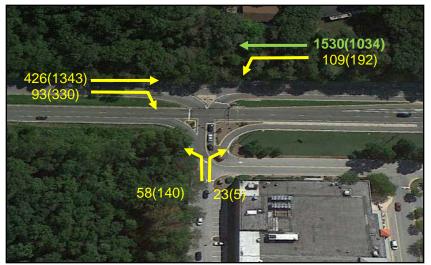
• Before-after covers 3 years of crashes before the Maryland J-turn deployment and 3 years of crashes after the Maryland J-turn deployment

Table 39. Observed Crash by Severity Before and After the Maryland J-turn treatment (number of crashes)

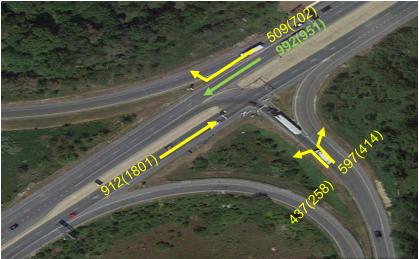
- Before period: 1985-1987
- After period: 1995-1997
- PDO: Property damage only

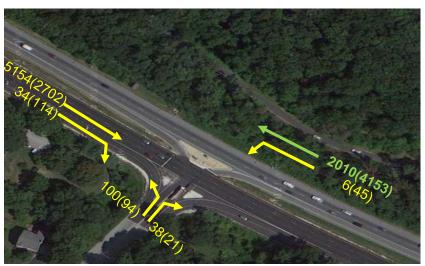

	В	efore Peri	od	A	fter Perio	d
Location	PDO	Fatal	Injury	PDO	Fatal	Injury
U.S. 15 at Hayward Road	32	1	41	36	0	59
U.S. 15 at Willow Road	29	1	22	27	0	22
U.S. 15 at Biggs Ford						
Road	38	1	46	21	1	10
U.S. 15 at Sundays Lane	13	0	12	17	0	9
U.S. 15 at College Lane	21	0	28	6	0	5
U.S. 15 at Old Frederick						
Road	23	1	21	23	1	16
U.S. 301 at Main Street	26	2	24	29	0	14
U.S. 301 at Del Rhodes						
Avenue	20	1	28	7	0	7
U.S. 301 at Galena Road	16	3	30	7	1	3
Total	218	10	252	173	3	145

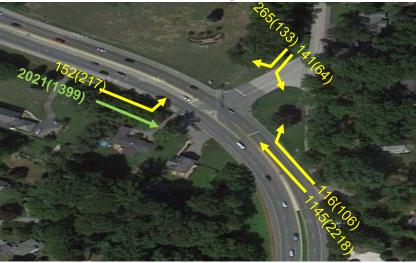
Source: Field evaluation of a restricted crossing U-turn intersection, FHWA, FHWA-HRT-11-067, June 2012



Continuous Green-T provides free-flow operations for the through movement in one direction, and the channelized left turn movement from the stem of the **minor street** to the mainline





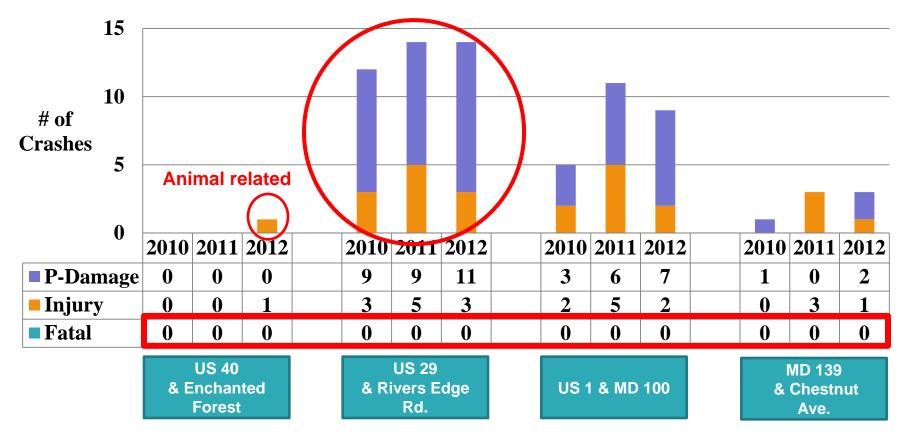

US 40 & Enchanted Forest, Ellicott City

MD 100 & US 1, Elkridge

US 29 & Rivers Edge Rd., Columbia

MD 139 & Chestnut Ave., Towson ¹⁴

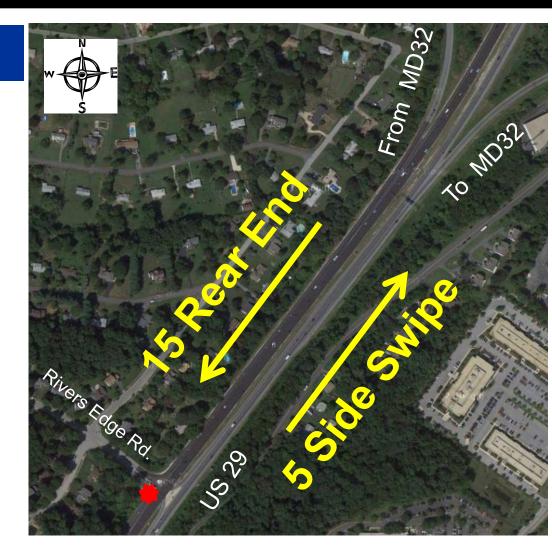
♦ US 40 @ Enchanted Forest, Ellicott City, MD



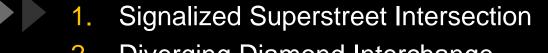
16

Continuous Green "T"

- Safety Analysis for the four locations
 - Using recent three-year(2010-2012) crash data



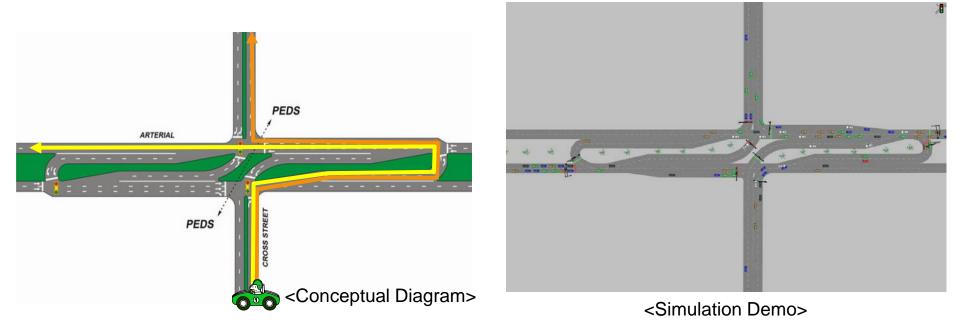
• By severity



US 29 @ Rivers Edge Rd.

- Rear end Collision
 - 20 Crashes
 50% of total or
 - : 50% of total crashes
 - 15 in SB & 5 in NB
- Sideswipe Collision
 - 6 Crashes
 - : 15% of total crashes
 - 5 in NB & 1 in SB

CASE STUDIES

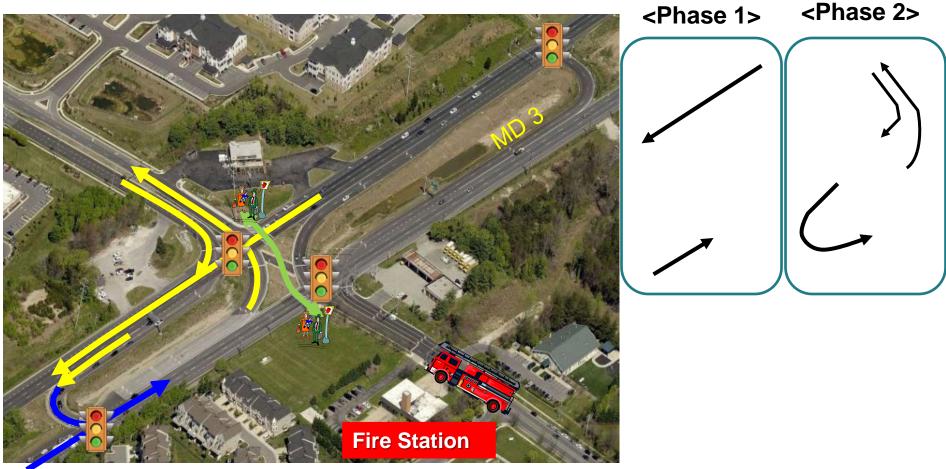


- 2. Diverging Diamond Interchange
- 3. Continuous Flow Intersection

- Superstreet design is similar to the Median U-turn (MUT) concept but different in that an MUT intersection allows through movements from the cross street.
- Superstreet usually allows left turns from the arterial to make direct left turns onto the cross-street.

MD 3 & Waugh Chapel Rd., Anne Arundel County

 The 1st signalized superstreet in Maryland (Opened on Oct.19, 2011)



<Before>

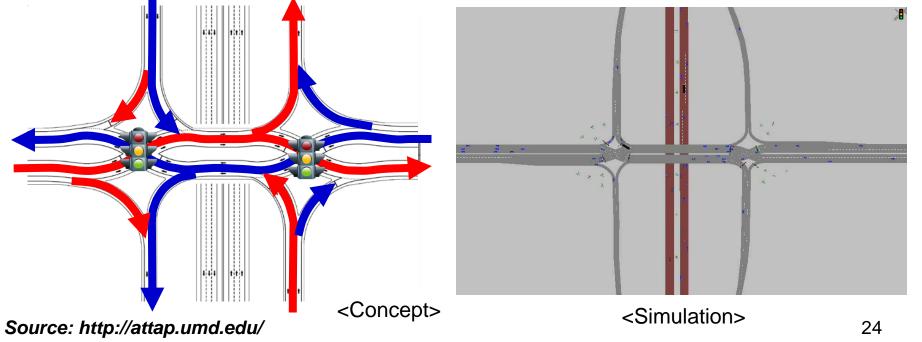
Signal Phasing

Network/System Performance

Network/System		2025 AM		2025 PM			
Performance	Before	After	Change (%)	Before	After	Change (%)	
Total Delay(hr)	1,693.1	1,158.2	-32	2,426.3	695.1	-71	
Delay/veh(s)	773.3	484.2	-37	1,202.0	245.8	-80	
Total Stops	14,406	14,815	3	11,680	18,042	54	
Vehicles Served	7,326	8,194	12	6,812	9,594	41	
Travel Distance (mi)	4,901.4	5,595.6	14	4,360.1	6,411.4	47	
Travel Time(hr)	1,793.7	1,279.7	-29	2,527.1	836.8	-63	

• With the projected traffic volume for 2025, assume that the shopping mall would be open in 2011.

• Using SimTraffic to simulate for one hour and for three replications


Safety Benefits – Crash data at the intersection

		Before						After						
	Jan. 01, 2008 ~ Dec. 31, 2010 (3 years)					Jan.01, 2012 ~ Mar. 31, 2013 (1 year and 3 months)								
Total Crashes				58				26						
Convertitu	Fatal PDO				Inju	ry	F	atal		PDO		Inju	ry	
Severity		0		29		29			0		17		9	
Collision	Rear End	Side swipe	Left Turn	Angle	Parked Veh.	Fixed Object	Other	Rear End	Side swipe	Left Turn	Angle	Parked Veh.	Fixed Object	Other
Туре	34	5	2	12	1	3	1	17	5	2	1	0	1	0

- DDI is a revised diamond interchange with one crossover intersection at each ramp terminal.
- The through lanes are crossed over a short section between two diamond ramp intersections, and then cross back to the normal (right) side of the roadway.

MD 295 & Arundel Mills Blvd, Anne Arundel County

 The first diverging diamond interchange in Maryland (Opened on June 11, 2012)

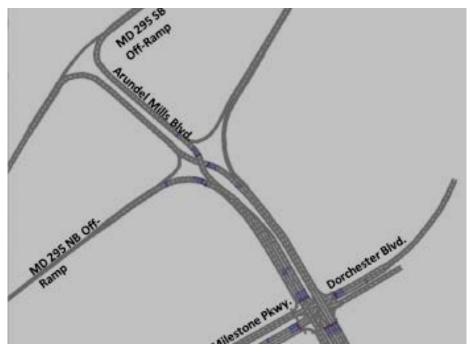
<After>
Source: http://baltimore.cbslocal.com/

MD 295 & Arundel Mills Blvd., Anne Arundel County

Before condition with projected volume

	PM Peak				Saturday Peak			
Approach	Delay (s/veh)	LOS	Avg. Queue (ft)	Max. Queue (ft)	Delay (s/veh)	LOS	Avg. Queue (ft)	Max. Queue (ft)
WB Arundel Mills Blvd	3.3	А	25	50	2.6	А	25	75
SB off-ramp from MD 295	267.7	F	5,050	6,000	393.5	F	5,300	6,000
EB Arundel Mills Blvd	6.5	А	25	75	5.4	А	25	75
NB off-ramp from MD 295	52.1	F	450	2,375	61.3	F	475	2,675

* Operational Analysis was performed with VISSIM

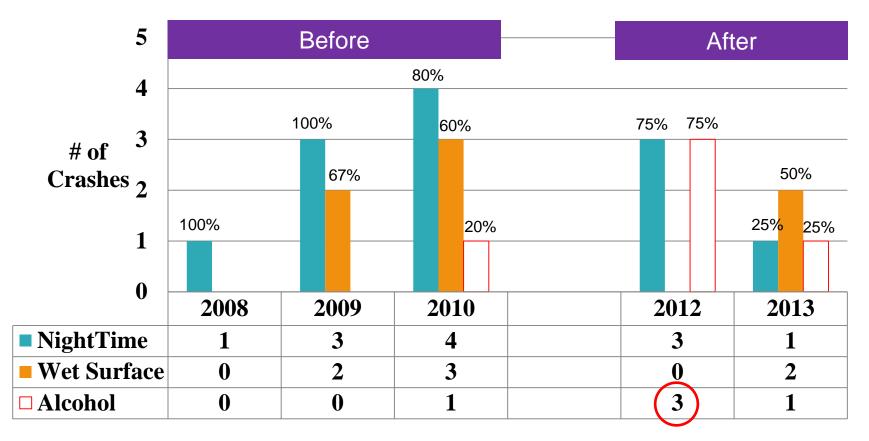

* Source: Venu Nemani, MD 295(Baltimore Washington pkwy.) at Arundel Mills Blvd. The Story Behind Maryland's First DDI, 2013 MdQi Conference

MD 295 & Arundel Mills Blvd., Anne Arundel County

Diverging Diamond Interchange with projected volume

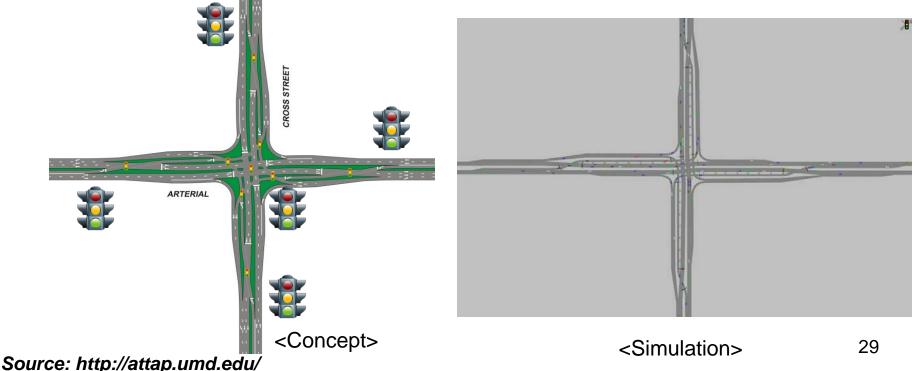
- Provides acceptable operations upon build out of Maryland Live!
- May address EB weaving along Arundel Mills Blvd. to Dorchester Blvd.
- No confusion to motorists in choosing correct lanes for turning movements
- Eliminates conflicts at SB off-ramp intersection

Approach	LOS: PM(SAT)
WB Arundel Mills Blvd	N/A(N/A)
MD 295 SB off-ramp	N/A(N/A)
EB Arundel Mills Blvd	C(C)
MD 295 NB off- ramp	B(B)


Source: Venu Nemani, MD 295(Baltimore Washington pkwy.) at Arundel Mills Blvd. The Story Behind Maryland's First DDI, 2013 MdQi Conference

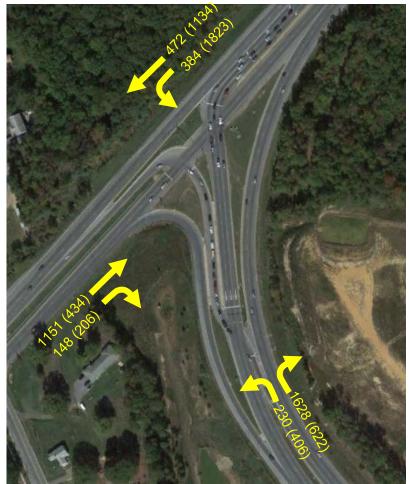
Safety Analysis at MD 295 & Arundel Mill Blvd.

By Conditions



Continuous Flow Intersection(CFI)

CFI allows left-turning vehicles to begin their turns several hundred feet ahead of the main intersection at a signalized "crossover" intersection, and move into separated lanes to the right of the opposing thru movement.



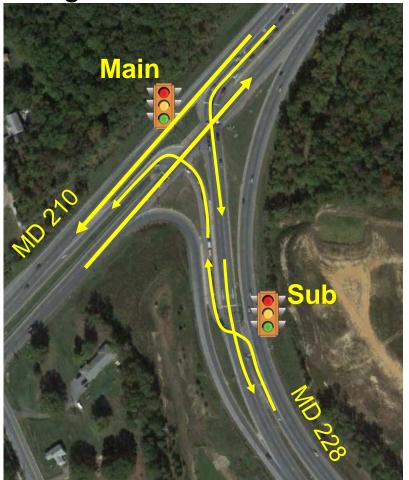
Continuous Flow Intersection(CFI)

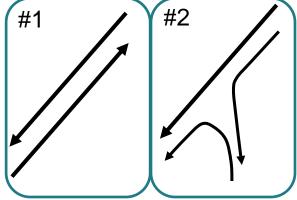
CFI-T of MD 210 and MD 228

Opened in 2000

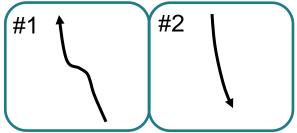
Flyover: \$30 Million

CFI: \$5.3 Million



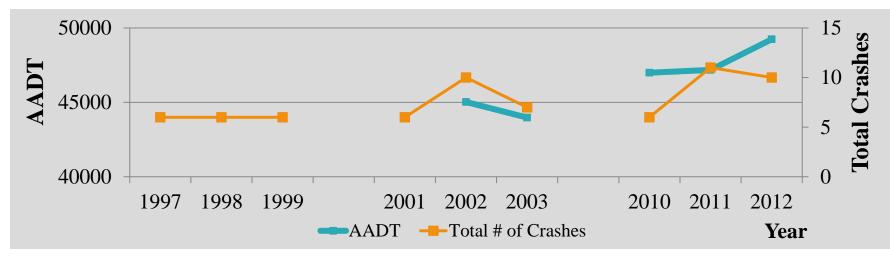

Continuous Flow Intersection(CFI)

CFI-T of MD 210 and MD 228


Signalization

<Main Intersection>

<Sub Intersection>



CASE STUDIES

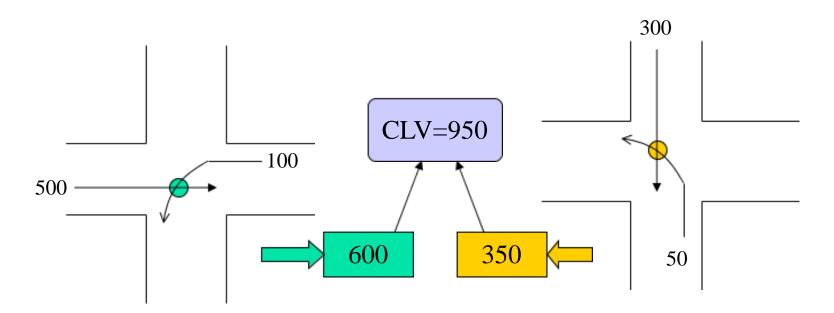
Continuous Flow Intersection(CFI)

- Safety Analysis at MD 210 and MD 228
 - CFI-T design opened in 2000
 - Crash data collection time
 - (Before) 01/01/1997 ~ 12/31/1999
 - (After 1) 01/01/2001 ~ 12/31/2003
 - (After 2) 01/01/2010 ~ 12/31/2012

* AADT is collected at MD 210 -. 20 mi south of MD 373, which is located to the north of the intersection of MD 210 & MD 228

ANALYSIS TOOLS

- Maryland Intersection Design &
 Capacity Analysis Program
- Capacity analysis program developed by MDSHA and the University of Maryland, College Park
- Intersection & interchange analysis
 - v/c ratio
 - LOS
 - Queue length
 - 4 leg, 3 leg, CFI intersections
 - RDI, DDI, and SPUI
- Include signal warrant and shoulder bypass analysis

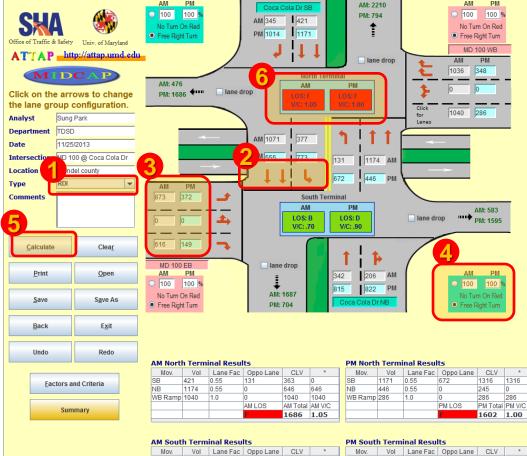

MIDCAP		
Offie	e of Traffic & Safety Univ. of Maryland	ł
	MIDCAP	
Maryla	and Intersection Des	sign&
	acity Analysis Progr	
Ple	ase choose the analysis ty	pe:
	Intersection	
	Interchange	
	Multi-Hour Calculation	
	Signal Warrant	
	Shoulder Bypass	
	About	
	Exit	
AT	AP http://attap.umd.edu	-

Critical Lane Volume (CLV)

 The sum of traffic volumes that cross at one point in an intersection (in veh/hr/lane);

Analyze the capacity of Regular Diamond Interchange design

Step 1: Choose the interchange type


Step 2: Set Lane Configurations

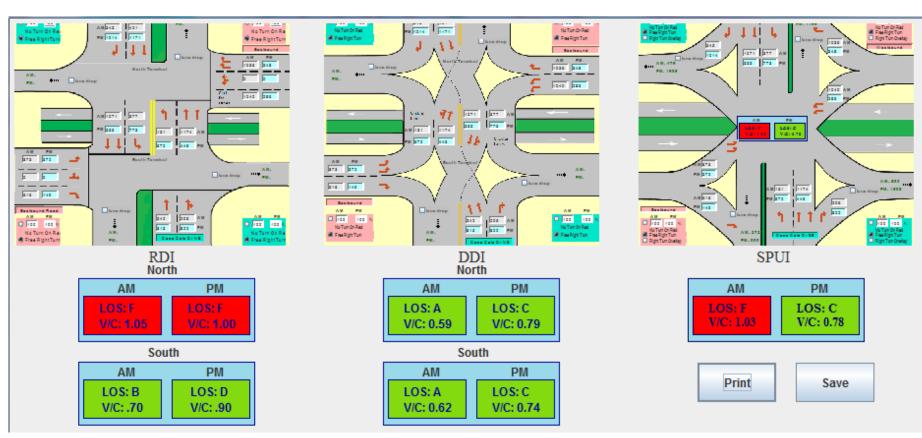
Step 3: Input Movement Volumes

Step 4: Choose Right Turn Control Type

Step 5: Calculate Critical Lane Volume

Step 6: Obtain Intersection LOS & V/C

AM Sout	AM South Terminal Results										
Mov.	Vol	Lane Fac	Oppo Lane	CLV	*						
NB	342	0.55	377	565	0						
SB	1071	0.55	0	589	589						
EB Ramp	873	0.6	0	524	524						
			AM LOS	AM Total	AM V/C						
			В	1113	.70						


	Mov.	Vol	Lane Fac	Oppo Lane	CLV	*
	NB	815	0.55	773	1221	1221
	SB	555	0.55	0	305	0
	EB Ramp	372	0.6	0	223	223
				PM LOS	PM Total	PM V/C
				D	1444	.90

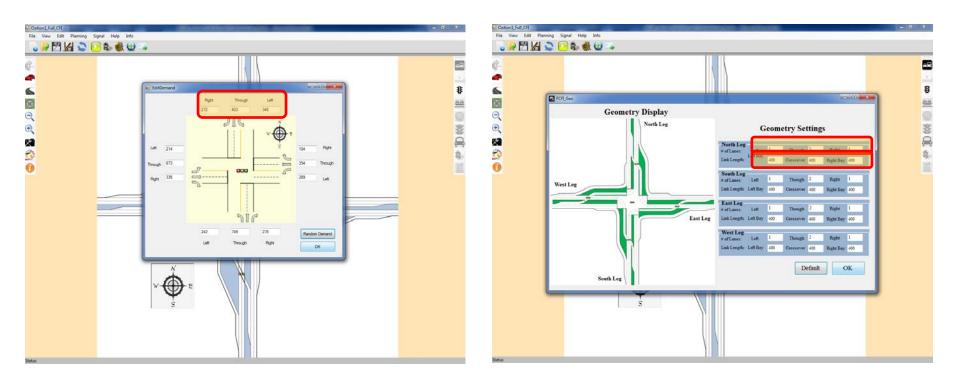
Planning analysis using MIDCAP

Summary



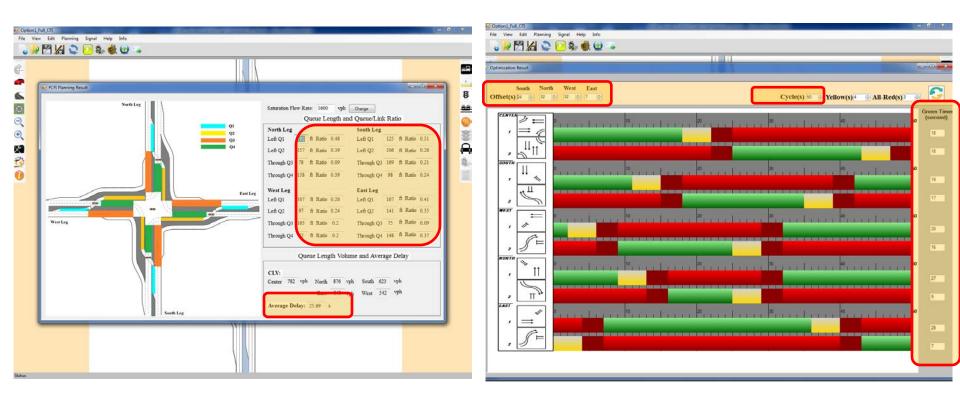
MUID

- Maryland Unconventional Intersection Design Analysis Tool
- Developed by MDSHA and the University of Maryland, College Park
- Include two modules:
 - Planning evaluation model
 - Delay and queue length
 - Signal optimization model
 - Offset, cycle length, and g/C ratio
- CFI, DDI and Superstreet



MUID

Input: demand and geometric layout



MUID

Outputs: planning evaluation and signal optimization

Questions / Comments?

Saed Rahwanji srahwanji@sha.state.md.us, 410-787-5870

Minseok Kim mkim@sha.state.md.us, 410-787-5875

