

# **EMPIRICAL OBSERVATIONS OF DRIVING BEHAVIORS AT INTERSECTIONS** WITH RED LIGHT CAMERA DEPLOYMENT Sung Yoon Park<sup>1</sup>, Chien-Lun Lan<sup>2</sup> and Gang-Len Chang<sup>3</sup>

# Abstract

- $\succ$  This study presents the results of a two-phase evaluation of the red-light cameras' (RLC) effects on traffic safety.
- Before-and-after study of RLC effectiveness
- The impact of RLC on the driving behaviors
- A properly deployed RLC program has the potential to
- Reduce side-impact crashes
- Decrease the percentage of aggressive drivers
- Encourage drivers to slow down and stop safely during the yellow phase
- Reduce red-light-running vehicles
- > Failing to inform drivers in advance of the RLC deployment may lead drivers to take improper decisions in the dilemma zone and result in rearend collisions.

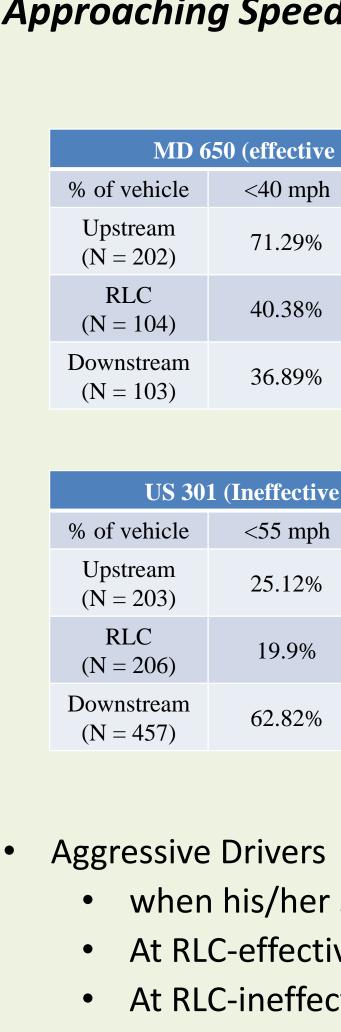
# RL

Types of be Type-1: reduct rear-end crash Type-2: reduct crashes but no

Type-3: reduct but not in side Type-4: no sign impact and rea

## The incons

- Failures


# **Design of Data Collection**

|                       | Upstream Intersection | RLC Intersection                         | Downstream Intersection 3 |
|-----------------------|-----------------------|------------------------------------------|---------------------------|
|                       |                       | PHOTO<br>ENFORCED                        |                           |
| Data collection sites | Upstream              | Red Light Camera                         | Downstream                |
| Site 1: MD 650        | Oakview Dr.           | Adelphi Rd.                              | Northampton Dr.           |
| Site 2: US 301        | Frank Tippett Rd.     | Rosaryville Rd.<br>(Old Indian Head Rd.) | Fairhaven Ave.            |



Key traffic characteristics and behavioral data

- Speed evolution of an approaching vehicle
- Distance to the stop line onset of the yellow phase
- An individual driver's decision on taking either the "stop" or "pass" action
- Acceleration and deceleration rates of each approaching vehicle
- Number of vehicles crossing the intersection during allred and/or red phases
- Timestamp when a "passing" vehicle traverses the stop line



<sup>1</sup>Maryland Department of Transportation State Highway Administration, <sup>2</sup>Virginia Transportation Research Council, <sup>3</sup>University of Maryland, College Park Acknowledgments This study was sponsored by Maryland Department of Transportation State Highway Administration (MDOT SHA).

| C effective                                           | Before-and-after Compa<br>in M                                                                                                                                                                                                                                                                                               |                                                    |                                                                                                             |                                                                                                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fore-and-after crash patterns                         | List of Literature <sup>*</sup>                                                                                                                                                                                                                                                                                              |                                                    | Montgomery County                                                                                           |                                                                                                                                                                                      | Howard Cou                                                                                                          | ntv                                                                                                                                                                                                              |
| ction in both side-impact and<br>shes                 | [Government Report]: Brooksville, Clermont, Davie, Miami, Pinecrest, Council Bluffs, Davenport,<br>Howard, Portland, Knoxville, Austin                                                                                                                                                                                       | M1<br>M2<br>M3                                     | MD 355 @ Cheltenh<br>MD 124 @ Gosher<br>Shady Grove Rd. @ Rese                                              | Rd. Harch Blvd.                                                                                                                                                                      | 1 US 40 @ N<br>2 US 1 @ C<br>Prince George's                                                                        | I. Ridge Rd.<br>orridor Rd.<br>County                                                                                                                                                                            |
| ction only in side-impact<br>not in rear-end crashes  | [Literature]: Bochner et al. (2010), Erke et al. (2009), Høye et al. (2013), Kangwon et al.(2007), Ko et al. (2013), Persaud et al. (2005), Radali et al. (2001), Retting et al. (2002), Ahmed et al. (2015), Shin et al.(2007);                                                                                             | M4<br>M5<br>M6<br>M7<br>M8                         | MD 355 @ Middlebro<br>MD 355 @ Halpine<br>US 29 @ Fenton<br>MD 355 @ Grosven<br>MD 185 @ Knowles            | Rd.P2St.P3or Ln.P4Ave.P3                                                                                                                                                             | 2 MD 410 (<br>3 US 301@ Old 1<br>4 MD 410 @<br>5 US 301 @                                                           | ernor Bridge Rd.<br>@ MD 450<br>ndian Head Rd.<br>@ 64th Ave.<br>McKendee                                                                                                                                        |
|                                                       | [Government Report]: Phoenix, Scottsdale, San Diego, Apopka, Boynton Beach, Campbellton, Fort<br>Lauderdale, Manatee, New Port Richey, Ocoee, Palatka, Palm Beach, Sarasota, West Park,<br>Lafayette, Greensboro, Newark, Suffolk, Amarillo, Denton, Diboll, Frisco, Mesquite, Port Lavaca,<br>Fairfax, Falls Church, Vienna | M9<br>M10<br>M11<br>M12<br>M13<br>M14              | US 29 @ MD 193<br>MD97 @ US 29<br>US 29 @ Tech R<br>MD 97 @ Nirbeck<br>MD 355 @ Montgom<br>MD 185 @ Randolp | d. P<br>Rd. P<br>ery Ln. P1                                                                                                                                                          | 7 MD 410 WE<br>8 MD 223 @ C<br>9 MD 301 @ Pc                                                                        | Adelphi Rd.<br>8 @ Ager Rd.<br>Id Branch Rd.<br>inter Ridge Dr.<br>Aarlboro Pike                                                                                                                                 |
| ction only in rear-end crashes<br>le-impact crashes   |                                                                                                                                                                                                                                                                                                                              | M15                                                | MD 650 @ Adelph<br>Summary for Side-Impact                                                                  | i Rd.                                                                                                                                                                                | )                                                                                                                   |                                                                                                                                                                                                                  |
| gnificant impacts in both side-<br>ear-end crashes    | [Literature]: Claros et al. (2017);<br>[Government Report]: Boca Raton, Clewiston, Jacksonville, Lakeland, Maitland, Miami Beach,<br>Miami Spring, Orange, Orlando, Osceola, Palm Coast, Sunrise, Tamarac, Tampa, West Miami,                                                                                                | Length of<br>Before   After<br>B:5-yr  A:3-yr      | Side-Impact Side-Impact<br>Injury PDO<br>"Increase" "Increase"<br>P3                                        | Side-Impact Side-In<br>Injury PDO<br>"Decrease" "Decre<br>H1 <sup>AR</sup> , H2 <sup>A</sup> , M1, M2 <sup>A</sup> ,<br>M6, M7, M8, M12, P<br>P8<br>H1 <sup>R</sup> , H2, M1, M2A, M | mpact Side-Impact Side-Impact<br>Injury PDO<br>ease" "Increase" "Decrease"<br>M5, M13 <sup>R</sup> , P10<br>P2, P4, | Side-ImpactSide-ImpactInjuryPDO"Decrease""Increase"M3, M4 <sup>A</sup> , M11 <sup>A</sup> , M14,M15, P1, P5, P6 <sup>R</sup> , P7, P9 <sup>R</sup> M4, M12, M14 <sup>A</sup> , M15, P2,                          |
| • • • • •                                             | Bedford, Cleveland, Garland, Haltom City, Richland Hills, University Park, Willis, Arlington                                                                                                                                                                                                                                 | B:3-yr  A:3-yr<br>B:2-yr  A:3-yr<br>B:5-yr  A:2-yr | M3, M5, P3, P10                                                                                             | M7, M8, P1, P4<br>H1, H2 <sup>A</sup> , M2 <sup>A</sup> , M6, M<br>M15, P1 <sup>R</sup> , P4<br>H1A, H2, M1, M2 <sup>A</sup> , M                                                     | 18, M1, M7, M12, M13 <sup>R</sup> , P8                                                                              | P5, P6, P7, P9,M11 <sup>A</sup><br>M4 <sup>R</sup> , M14 <sup>R</sup> ,M11 <sup>A</sup> ,P2, P5,<br>P6, P7, P9 <sup>R</sup><br>M4 <sup>A</sup> , M10, M14, M15, P1,                                              |
| nsistencies in evaluation<br>es to account for regres | n findings are likely attributed to<br>sion to mean                                                                                                                                                                                                                                                                          | B:3-yr  A:2-yr<br>B:2-yr  A:2-yr<br>B:2-yr  A:2-yr | M9, M12, P3                                                                                                 | M5, M6, M7, M8, P4<br>H1, H2, M2 <sup>A</sup> , M5, M<br>P1, P4<br>H1, H2 <sup>A</sup> , M2A, M6, M<br>P1, P4 <sup>A</sup>                                                           | 7, M8, M1, M3, M13 <sup>R</sup> , P8, P10                                                                           | <ul> <li>P2, P5, P6, P7, P9,M11</li> <li>M4, M6, M10, M14, M15,</li> <li>P2, P5, P6, P7, P9, M11<sup>A</sup></li> <li>M4<sup>R</sup>, M9, M10, M14, M15,</li> <li>P2, P5, P6, P7, P9, M11<sup>A</sup></li> </ul> |
| nce of spillover/halo eff                             | fects                                                                                                                                                                                                                                                                                                                        | PDO: Property Da                                   | mage Only                                                                                                   | laval                                                                                                                                                                                |                                                                                                                     |                                                                                                                                                                                                                  |

Existence of spillover/halo effects

# **Empirical Observation Results**

## **Approaching Speed Distributions**

| 650 (effective in reducing side-impact crashes; speed limit: 40 MPH) |              |            |         |         |  |  |  |
|----------------------------------------------------------------------|--------------|------------|---------|---------|--|--|--|
| <40 mph                                                              | 40 - 45  mph | 45-50  mph | >50 mph | Average |  |  |  |
| 71.29%                                                               | 14.85%       | 12.87%     | 0.99%   | 35.3    |  |  |  |
| 40.38%                                                               | 36.54%       | 13.46%     | 9.62%   | 41.5    |  |  |  |
| 36.89%                                                               | 33.98%       | 21.36%     | 7.77%   | 41.9    |  |  |  |

| 1 (Ineffective in reducing side-impact crashes; Speed limit: 55 MPH) |            |             |         |         |  |  |
|----------------------------------------------------------------------|------------|-------------|---------|---------|--|--|
| <55 mph                                                              | 55-60  mph | 60 – 65 mph | >65 mph | Average |  |  |
| 25.12%                                                               | 24.14%     | 30.54%      | 20.20%  | 59.1    |  |  |
| 19.9%                                                                | 16.02%     | 24.27%      | 39.81%  | 61.5    |  |  |
| 62.82%                                                               | 19.23%     | 11.54%      | 6.41%   | 54.7    |  |  |

• when his/her speed is +10mph than speed limit • At RLC-effective intersection (MD 650): 9.62% • At RLC-ineffective intersection (US 301): 39.81% Spillover effect: reduced the percentage of aggressive drivers at the downstream intersection

## Speed Change during Yellow Phase

| Moderate "Passing" Drivers |              |                                    |                                                         |        |  |  |
|----------------------------|--------------|------------------------------------|---------------------------------------------------------|--------|--|--|
| Site                       | Intersection | Difference bet                     | Difference between the passing speed (at the stop line) |        |  |  |
|                            |              | and the approaching speeds (700ft) |                                                         |        |  |  |
|                            |              | < -5mph                            | Unchanged                                               | > 5mph |  |  |
| MD650                      | Upstream     | 46 %                               | 43 %                                                    | 11 %   |  |  |
| (Effective)                | RLC          | 7 %                                | 57 %                                                    | 36 %   |  |  |
|                            | Downstream   | 13 %                               | 75 %                                                    | 12 %   |  |  |
| US310                      | Upstream     | 9 %                                | 56 %                                                    | 35 %   |  |  |
| (Ineffective)              | RLC          | 8 %                                | 46 %                                                    | 46 %   |  |  |
|                            | Downstream   | 20 %                               | 75 %                                                    | 5 %    |  |  |
|                            | Ag           | gressive "Passing                  | " Drivers                                               |        |  |  |
| Site                       | Intersection | Difference bet                     | Difference between the passing speed (at the stop line) |        |  |  |
|                            |              | and the approaching speeds (700ft) |                                                         |        |  |  |
|                            |              | < -10 mph                          | Unchanged                                               | > 5mph |  |  |
| MD650                      | Upstream     | 6.7 %                              | 20 %                                                    | 10 %   |  |  |
| (Effective)                | RLC          | 29 %                               | 36 %                                                    | 7 %    |  |  |
|                            | Downstream   | 30 %                               | 60 %                                                    | 0 %    |  |  |
| US310                      | Upstream     | 0 %                                | 89 %                                                    | 11 %   |  |  |
| (Ineffective)              | RLC          | 12 %                               | 41 %                                                    | 35 %   |  |  |
|                            | Downstream   | 40 %                               | 20 %                                                    | 0 %    |  |  |

- its downstream intersection
- its downstream intersection
- Spillover effect

Side-impact crashes significant at the 90% confidence leve R: Rear-End crashes significant at the 90% confidence leve AR: Both side-impact and rear-end crashes significant at the 90% confidence level

Moderate speed drivers, who decelerate when passing the intersection during yellow phase increase from the RLC to

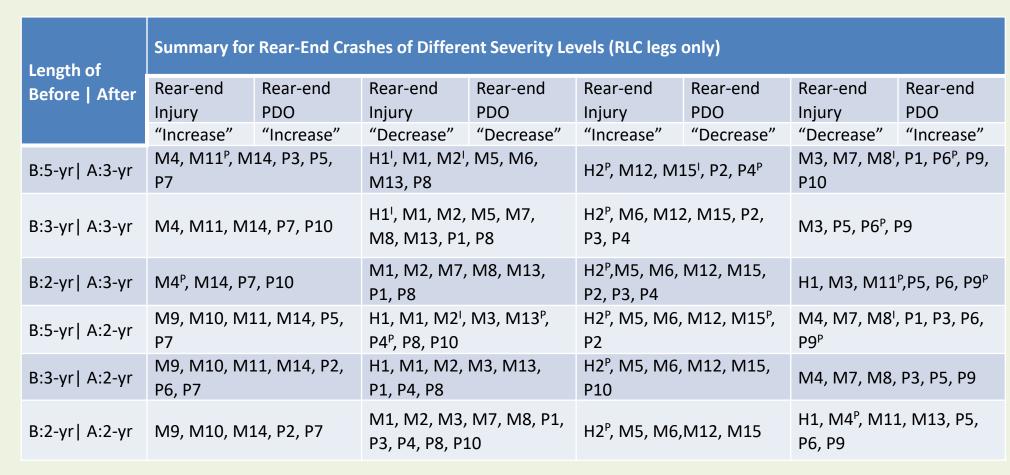
• MD 650:  $7\% \rightarrow 13\%$ ; US 301:  $8\% \rightarrow 20\%$ 

Moderate speed drivers, who accelerate when passing the intersection during yellow phase **decrease** from the RLC to

• MD 650:  $36\% \rightarrow 12\%$ ; US 301:  $46\% \rightarrow 5\%$ 

## Effects on driving behaviors in the Dilemma Zone

| Site                                                                               | Intersection | Choose to stop within<br>their<br>"must-go" zone<br>(rear-end collisions) | Choose to pass within<br>their<br>"must-stop" zone<br>(side-impact crash) | Vehicles<br>trapped in<br>DZ | Total No. of<br>vehicles<br>encountering the<br>yellow phase |  |
|------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|--|
| MD 650                                                                             | Upstream     | 0.4% (1)                                                                  | 5.9% (15)                                                                 | 23.7% (60)                   | 253                                                          |  |
|                                                                                    | RLC          | 12% (32)                                                                  | 0.7% (2)                                                                  | 6.7% (18)                    | 267                                                          |  |
| (Effective)                                                                        | Downstream   | 6.1% (12)                                                                 | 2.3% (5)                                                                  | 5.1% (10)                    | 196                                                          |  |
|                                                                                    | Upstream     | 0.5% (2)                                                                  | 0.9% (4)                                                                  | 30.1% (131)                  | 435                                                          |  |
| US 301                                                                             | RLC          | 3.9% (21)                                                                 | 1.3% (7)                                                                  | 37.4% (202)                  | 540                                                          |  |
| (Ineffective)                                                                      | Downstream   | 2.4% (7)                                                                  | 4.7% (14)                                                                 | 27.0% (80)                   | 296                                                          |  |
| MD 450 (Effective)                                                                 |              | 10.11% (9)                                                                | 1.12% (1)                                                                 | 13.48% (12)                  | 89                                                           |  |
| MD 97 (Ineffective)                                                                |              | 2.94% (4)                                                                 | 0.74% (1)                                                                 | 29.41% (40)                  | 136                                                          |  |
| * Numbers in parenthesis are number of cases observed during field data collection |              |                                                                           |                                                                           |                              |                                                              |  |


• The percentages of drivers who decided to stop when they were actually within the "must-go" zone

- MD 650: 12%; US301: 3.9%
- Those drivers might cause more rear-end collisions. Only a relatively small percentage of drivers were observed to pass when they were in "must-stop" zone.
- Such drivers are at risk of causing side-impact crashes.
- The percentage of drivers (37%) trapped in the dilemma zone at the RLC-ineffective intersection (US 301) was much higher than at RLC-effective intersection (MD 650, 6.7%)



## STATE HIGHWAY ADMINISTRATION

# arison of RLC effectiveness aryland



I: Injury crashes significant at the 90% confidence level P: PDO crashes significant at the 90% confidence level

IP: Both injury and PDO crashes significant at the 90% confidence level

## Findings are consistent with the literature

- Reductions in side-impact crashes at most intersections with RLC
- The percentage of intersections with RLC had an increase of rear-end collisions and it was at approximately the same level as those reported to have positive effects
- A small percentage of RLC intersections seem to suffer from an increase in both rear-end and side-impact crashes

# Conclusions

## Findings from the Two-Phase Evaluations

- Proper implementation of the RLC program has reduced side-impact crashes, but not rear-end collisions
- RLC may either increase or decrease the number of rear-end collisions (depends on behavior of the driving populations)
- RLC reduced the percentage of aggressive drivers at both the RLC and its downstream intersection
- A properly implemented RLC program has significant influence on the behaviors of drivers
- A properly implemented RLC intersection was shown to have a spillover effect to neighboring intersections.

## Future Study

• Due to the limited resources this study includes four intersections for data observations. Further analysis with different locations might be needed to generalize the effectiveness of the RLC