

Analyzing Driver Behaviors at Intersections with RLC deployment

Traffic Safety and Research Laboratory, UMCP

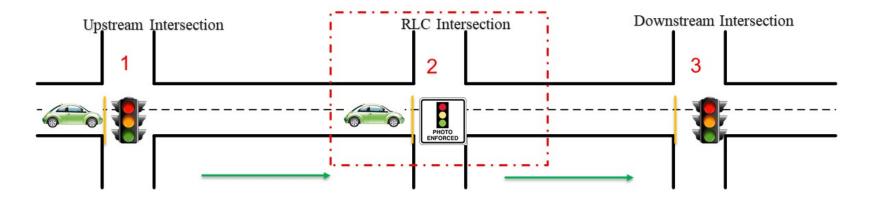
and ATTAP research team, OOTS, SHA

Comparison of the crash patterns before and after the RLC deployment – (From the literature review)

Types of crash patterns	Findings reported in the literature
Type-1	[Government Reports]: Brooksville, Clermont, Davie, Miami, Pinecrest, Council
Angled Crashes: Reduced	Bluffs, Davenport, Howard, Portland, Knoxville, Austin
Rear-end Crashes: Reduced	
Type-2	[Literature]: Bochner et al. (2010), Erke et al. (2009), Høye et al. (2013), Kangwon et al. (2007), Ko et al. (2013), Persond et al. (2005), Badali et al. (2001), Betting et al. (2002), Ahmed et al. (2015), Shin et al. (2007);
Angled Crashes: Reduced	Persaud et al. (2005), Radali et al. (2001), Retting et al. (2002), Ahmed et al. (2015), Shin et al.(2007); [Government Reports]: Phoenix, Scottsdale, San Diego, Apopka, Boynton Beach, Campbellton, Fort Lauderdale,
Rear-end Crashes: Increased	Manatee, New Port Richey, Ocoee, Palatka, Palm Beach, Sarasota, West Park, Lafayette, Greensboro, Newark, Suffolk, Amarillo, Denton, Diboll, Frisco, Mesquite, Port Lavaca, Fairfax, Falls Church, Vienna
Type-3	[Literature]: Council et al. (2005),
Angled Crashes: Increased	[Government Report]: Houston, Cunningham
Rear-end Crashes: Reduced	
Type-4	[Literature]: Claros et al. (2017)
Angled Crashes: Increased	[Government Reports]: Boca Raton, Clewiston, Jacksonville, Lakeland, Maitland, Miami Beach, Miami Spring, Orango, Orlando, Ogagolo, Polm Coast, Suprise, Tempre, Tempre, West Miami
Rear-end crashes: Increased	Miami Spring, Orange, Orlando, Osceola, Palm Coast, Sunrise, Tamarac, Tampa, West Miami, Bedford, Cleveland, Garland, Haltom City, Richland Hills, University Park, Willis, Arlington

Before-and-after comparison at 27 RLC MD intersections (consistent with the findings in the literature)

Period of	Angled	Rear-end	Angled	Rear-end	Angled	Rear-end	Angled	Rear-end	
Comparison Before After	"Increase"	"Increase"	"Decrease"	"Decrease"	"Increase"	"Decrease"	"Decrease"	"Increase"	Note:
B:5-yr A:3-yr	P3		H1 ^{AR} , H2 ^A , M1, M7, M8, M12, F		M13 ^R , P10		M3, M4 ^A , M11 ^A P1, P5, P6 ^R , P7,		P: Prince Georg's County H : Howard county
B:3-yr A:3-yr	M3, P3, P10		H1 ^R , H2, M1, M M8, P1, P4	12 ⁴ , M5, M7,	M6, M13 ^R , P8		M4, M12, M14 ⁴ P6, P7, P9,M11		M: Montgomery county ^A : denotes the statistically significant Angled crash change
B:2-yr A:3-yr	M3, M5, P3, P1	0	H1, H2 ^A , M2 ^A , M P1 ^R , P4	M6, M8, M15,	M1, M7, M12, N	113 ^R , P8	M4 ^R , M14 ^R ,M1 P7, P9 ^R	1 ^A ,P2, P5, P6,	^R : denotes the statistically significant Rear-End crashes change
B:5-yr A:2-yr	M9, P3		H1 ^A , H2, M1, M M6, M7, M8, P4		M12, M13 ^R , P8,	P10	M4 ^A , M10, M14 P5, P6, P7, P9,N		AR: Both angled and rear-end crashes experienced statistically cignificant changes
B:3-yr A:2-yr	M9, M12, P3		H1, H2, M2 ^A , M P4	I5, M7, M8, P1,	M1, M3, M13 ^R , 1	P8, P10	M4, M6, M10, I P5, P6, P7, P9, I		significant changes
B:2-yr A:2-yr	M5, P3		H1, H2 ^A , M2 ^A , M P4 ^A	M6, M8, P1,	M1, M3, M7, M P10	12, M13 ^R , P8,	M4 ^R , M9, M10, P2, P5, P6, P7, 1		



Phase-II: Empirical observations of driver behaviors at RLC intersections

Key questions to be answered:

- Any **spillover impacts** due to the RLC deployment?
- **Behavioral Factors** contributing to different levels of RLC effectiveness?

Data collection sites:

Site 1: MD 650 from Site 2: US 301 from

Oakview Dr. (Upstream), Frank Tippett Rd. (Upstream), Adelphi Rd. (RLC), to Northampton Dr. (Downstream) Old Indian Head Rd. (RLC), to Fairhaven Ave. (Downstre

Data collection sites

A. 3-intersection Site 1: MD 650 – Effective RLC (i.e., reduction in the angled-crash frequency)
Oakview Dr. (Upstream), Adelphi Rd. (RLC), to Northampton Dr. (Downstream)
B- 3-intersection Site 2: US 301 – Ineffective RLC (i.e., no impact on both types of accidents)
Frank Tippett Rd. (Upstream), Old Indian Head Rd. (RLC), to Fairhaven Ave. (Downstream)
C. Individual intersections: MD 410 @ MD 450 – Effective (i.e., reduction in the angled-crash frequency)
MD 97 @ MD 28 – Ineffective (i.e., no impact on angled-crash frequency)

Variables measured from field observations

Traffic characteristics at all 3 intersections on each RLC study site:

- The approaching speed of vehicles by type
- Speed variation of each individual vehicle at the stop line, 100, 250, 400, and 550 feet from
- the target intersection
- **Distance** to the stop line when a vehicle choose to stop at the intersection

Responses to the yellow signal at each RLC study site:

- A driver's decision to stop or to pass at the onset of a yellow phase, given the detected speed
- and **distance** from the intersection stop line
- The **speed**, **acceleration**, and **deceleration** rate of each approaching vehicle when encountering
- a yellow phase
- The time stamp during the yellow or the red phase when a vehicle first traverses the
- intersection stop line
- The number of vehicles crossing the stop line during the all-red and/or red phase

Overview of the RLC study site (MD650)

Distribution of the approaching speeds

The RLC-effective (reduce the number of angled crashes) intersection:

- much lower percentage of aggressive drivers than the RLC-ineffective intersection

- The RLC deployment has no significant impacts on the average approaching speed.

MD 650 (EFFECTIVE SITE), SPEED LIMIT: 40 MPH

US 301 (INEFFECTIVE SITE), SPEED LIMIT: 55 MPH

% of vehicle	<40 mph	40 – 45 mph	45 – 50 mph	>50 mph	Average	% of vehicle	<55 mph	55 – 60 mph	60 – 65 mph	>65 mph	Average
Upstream $(N = 202)$	71.29%	14.85%	12.87%	0.99%	35.3	Upstream $(N = 203)$	25.12%	24.14%	30.54%	20.20%	59.1
RLC (N = 104)	40.38%	36.54%	13.46%	9.62%	41.5	RLC (N = 206)	19.9%	16.02%	24.27%	39.81%	61.5
Downstream (N = 103)	36.89%	33.98%	21.36%	7.77%	41.9	Downstream $(N = 457)$	62.82%	19.23%	11.54%	6.41%	54.7

Confirm the findings with the data from additional RLC sites:

The RLC-effective intersection has a relatively low percentage of aggressive drivers (10 mph over the speed limit)

MD 410 (EFFECTIVE SITE), SPEED LIMIT: 45 MPH

% of vehicle	<45 mph	45 – 50 mph	50 – 55 mph	>55 mph	Average
RLC (N = 157)	27.39%	33.12%	33.12%	6.37%	47.26

MD 97 (INEFFECTIVE SITE), SPEED LIMIT: 50 MPH

% of vehicle	<50 mph	50 – 55 mph	55 – 60 mph	>60 mph	Average
RLC (N = 203)	30.05%	22.66%	21.67%	25.62%	54.75

Speed changes during the yellow phase for

Moderate "passing " drivers (approaching speed within 10 mph of the speed limit)

Site	Intersection	Difference between the passing speed (at the stop line) and the approaching speeds						
		< -5mph Unchanged		> 5mph				
	Upstream	46%	43%	11%				
MD650 (Effective)	RLC	7%	57%	36%				
	Downstream	13%	75%	12%				
	Upstream	9%	56%	35%				
US310 (Ineffective)	RLC	8%	46%	46%				
(inclicetive)	Downstream	20%	75%	5%				

of Samples
MD 650 Upstream: 162
MD 650 RLC: 120
MD 650 Downstream: 95
US 301 Upstream: 62
US 301 RLC: 63
US 301 Downstream: 43

Spillover Impacts at both types of intersections: driving populations become less aggressive!

- Percentage of drivers reducing their speed \rightarrow increase at the downstream intersection
- Percentage of drivers increase their speed → decrease at the downstream intersection
- Percentage of drivers exerising constant speed increases from RLC to its downstream intersections.

Speed change during the yellow phase: Aggressive "passing " drivers (approaching speed 10 mph above the speed limit)

Site	Intersection	Difference between the passing speed (at the stop line) and the approaching speeds							
		< -10 mph	< -5mph	Unchanged	> 5mph				
	Upstream	6.7%	70%	20%	10%				
MD650 (Effective)	RLC	28.6%	57%*	36%	7%				
	Downstream	30% 🜾	40%	60%	0%				
	Upstream	0%	0%	89%	11%				
US310 (Ineffective)	RLC	11.8%	24%	41%	35%				
(meneeuve)	Downstream	40%	80%	20%	0%				

Spillover Impacts at both types of intersections: driving populations become less aggressive

- Percentage of drivers reducing their speed → increase at the downstream intersection
- Percentage of drivers increase their speed → decrease at the downstream intersection

MD650 (Effective site): % drivers take the "stop" decision

	MD 650	MD 650		eed at the o	nset of Yello		
Speed limit: 40 mph	RLC Inters	ection	<35	35 ~ 45	45 ~ 55	>55	
	Vehicle's	<100	6% (18)	0% (14)	0% (4)	**	
	distance- to-stop-	100 ~ 200	29% (17)	14% (26)	17% (18)	0% (3)	*The number within the parenthesis is
	line at	200 ~ 300	90% (10)	76% (25)	38% (8)	0% (2)	the sample size ** An empty cell denotes no samples
	the onset	300 ~ 400	100% (4)	100% (5)	50% (2)	0% (1)*	were observed for that category
	of yellow (feet)	>400	100% (1)				

ATTAP

Between RLC and upstream intersections

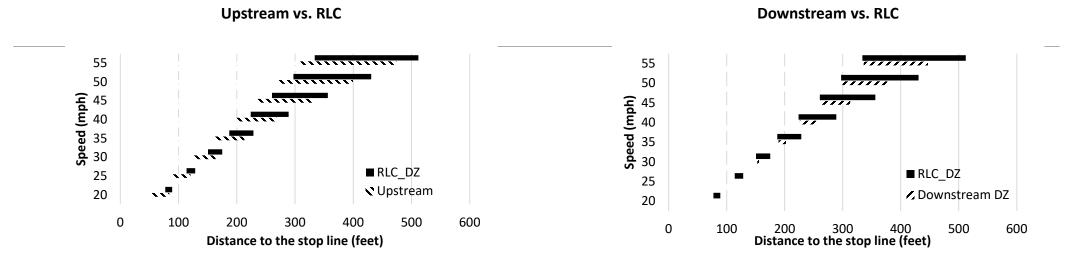
MD 650		Vehicle speed at the onset of Yellow (MPH)							
% (RLC – U	pstream)	<35	35 ~ 45	45 ~ 55	>55				
Vehicle's	<100	0% (14)	0% (14)	0% (4)					
distance- to-stop-	100 ~ 200	50% (8)	13% (16)	10% (10)					
line at	200 ~ 300		7%(15)	17% (6)					
the onset of yellow (feet)	300 ~ 400	0% (3)	0% (3)	17% (2)					
	>400								

Red light camera can encourage more vehicles at different speeds & locations to take the stop decision

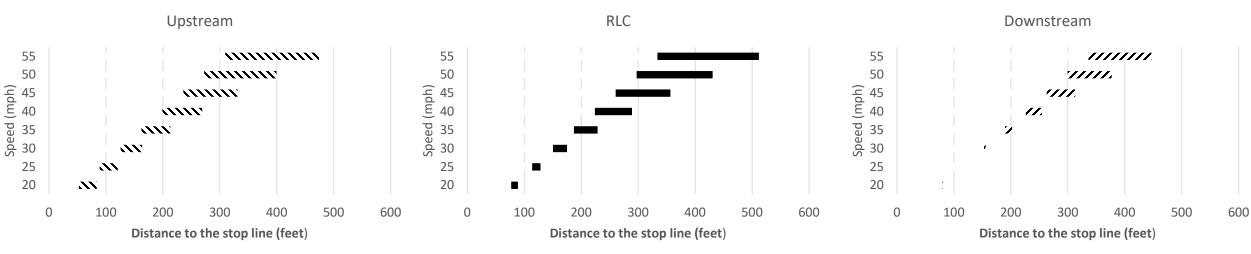
Between downstream and upstream intersections; N=168

MD 650		Vehicle speed at the onset of Yellow (MPH)						
% (downSt	– UpSt)	<35	35 ~ 45	45 ~ 55	>55			
Vehicle's	<100	7% (14)	0% (16)	0% (12)				
distance- to-stop-	100 ~ 200	50% (2)	-6% (7)	25% (4)				
line at	200 ~ 300		13% (5)	33% (4)				
the onset	300 ~ 400	0% (3)	0% (2)	17% (2)				
of yellow (feet)	>400	0% (1)	0% (8)	17% (6)	0% (2)			

Spillover impacts are observed at the downstream intersection. Drivers at the downstream intersection are more likely to choose the stop decision compared to those at the upstream intersection.


US301 (Ineffective site): % drivers take the "stop" decision

US 301		Vehicle	Vehicle speed at the onset of Yellow (MPH)								N=	470				
RLC		<35	35~45	4	5~55	55~65	65	~75	75~85	>85						
Vehicle's	<200	0% (2)	0% (1)	0	% (3)	0% (10)	0%	(14)	0% (2)	0% (1)						
distance-to- stop-line at	200 ~ 300		100% (1	.) 0	% (4)	33% (6)	0%	(10)		0% (1)						
the onset of	300 ~ 400			67	7% (3)	38% (13)	55%	5 (11)	100% (1) 0% (1)						
yellow (feet)	400 ~ 500			89	9% (9)	79% (19)	63%	5 (16)	100% (1)		he spill		•	-	
	500 ~ 600			85	% (13)	100% (9)	100	% (7)	100% (3) 50% (2		effecti	ve set i	s iess si	ignijica	1111.
	600 ~ 700			10	0% (4)	94% (18)	100%	% (20)	100% (4) 100% (1	.)					
	>700	Only 1	vehicle cho	ose to	pass /	100% (9)	100	% (8)	100% (2)						
US 301		Vehicle	speed at	t the o	nset of	Yellow (MPH)	US S	301		Vehicl	e speed	at the o	onset of	Yellow	(MPH)
% (RLC – Upstre	eam)	<35	35~45 4	45~55	55~65	65~75	75~85	Dow	n vs. Upstr	eam	<35	35~45	45~55	55~65	65~75	75~85
Vehicle's	<200			r				Vehi		<200						
distance-to- stop-line at	200 ~ 300			-50%	33%				nce-to- ·line at	200 ~ 300			-50%	0%		
the onset of	300 ~ 400			21%	25%	55%		•	onset of	300 ~ 400			-14%	37%	0%	
yellow (feet)	400 ~ 500			17%	8%	34%		yello	w (feet)	400 ~ 500		0%	29%	-5%	-29%	
	500 ~ 600			-15%	0%	20%				500 ~ 600				-33%	20%	
	600 ~ 700			0%	-6%	0%	0%			600 ~ 700				0%	0%	0%
	>700				0%	0%	0%			>700						


RLC encourages vehicles to take the stop decision at the RLC intersection Especially for drivers at higher approaching speeds

Vehicles far away from intersection always choose to stop (no data)

MD 650 (Effective): Dilemma Zone Distribution

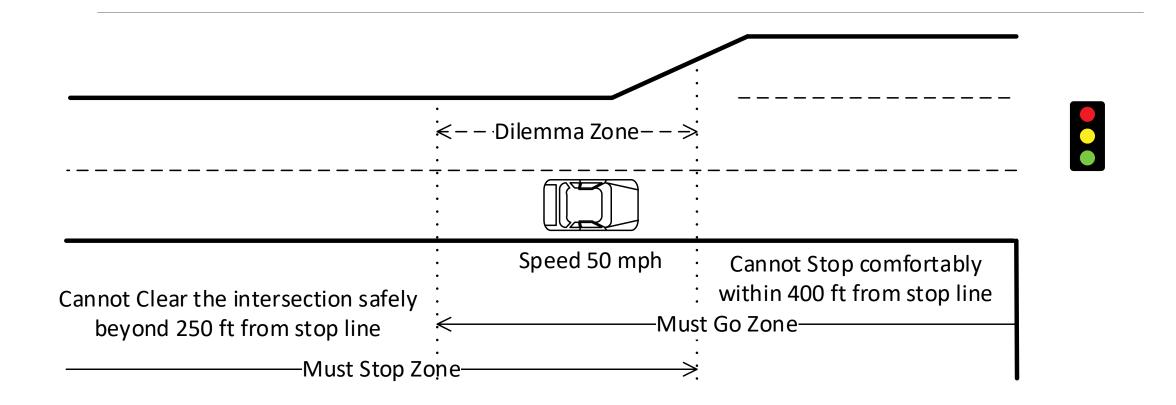


Illustration of the recomputed dilemma zones after the RLC deployment

Dilemma Zone Distribution

Number of vehicles making "inappropriate" decisions (during the yellow phase)

Site	intersection	Choose to stop within their "Must-Go" Zone <mark>(rear-end collision)</mark>	Choose to pass within their "Must-Stop" Zone (angled crash)	No. of vehicles trapped in DZ	Total No. of vehicles encountering the yellow phase
	Upstream	0.4% (1)	5.9% (15)	23.7% (60)	253
MD 650 (Effective)	RLC	12% (32)	0.7% (2)	6.7% (18)	267
(Lineetive)	Downstream	6.1% (12)	2.3% (5)	5.1% (10)	196
	Upstream	0.5% (2)	0.9% (4)	30.1% (131)	435
US 301 (Ineffective)	RLC	3.9% (21)	1.3% (7)	37.4% (202)	540
(meneetive)	Downstream	2.4% (7)	4.7% (14)	27.0% (80)	296

- *More vehicles in the ineffective* RLC intersection *trapped in the dilemma zone*, compared to the effective RLC intersection
- Some vehicles at the RLC intersection *choose to "Stop" within their "Must-go" zone*. Such inappropriate decisions may result in potential rear-end crashes

Observing drivers taking the "passing" decision during the yellow phase -1

- MD650 (Effective site): (N = 270, 7 Red-Light-Running Vehicles)
 - 2.69% cross the stop line after the onset of the all-red phase (vs. 3.8% at ineffective site)
 - 15.77% cross the stop line within 1 second prior to the all-red phase
 - 36.15% cross the stop line within 2 seconds prior to the all-red phase
- US301 (Ineffective site): (N = 79, 3 Red-Light-Running Vehicles)
 - **3.8%** cross the stop line after the onset of the all-red phase
 - 15.19% cross the stop line within 1 second prior to the all-red phase
 - 39.24% cross the stop line within 2 seconds prior to the all-red phase

Observing drivers taking the "passing" decision during the yellow phase -2

- For those drivers decide to pass the intersection after encountering a yellow phase at US301 (ineffective site)
- Upstream: (N=76)
 - 9.21% after the onset of the all-red phase (7 Red-Light-Running vehicles)
 - **31.58%** within 1 second prior to the all-red phase
- RLC: (N=79) reduce the red-light-running percentage (3.8% vs. 9.21%)
 - **3.8%** cross after the onset of the all-red phase (**3** Red-Light-Running vehicles)
 - **15.19%** cross within 1 second prior to the all-red phase
- Downstream: (N=28) spillover impact exists (3.57% vs. 9.21%)
 - **3.57%** cross after the onset of all-red phase (**1** Red-Light-Running vehicles)
 - **17.86%** cross within 1 second prior to the all-red phase

Residual impacts can be observed from the percentage of red-light-running vehicles

Observing drivers taking the "passing" decision during the yellow phase -3

- For those drivers decide to pass after encountering a yellow phase at MD650 (effective site)
- Upstream: (N=163)
 - **3.07%** after the onset of the all-red phase (5 Red-Light-Running vehicles)
 - **17.18%** within 1 second prior to the all-red phase
- RLC: (N=270) reduce the red-light-running percentage (3.07% vs. 2.69%)
 - **2.69%** after the onset of the all-red phase (7 Red-Light-Running vehicles)
 - **15.77%** within 1 second prior to the all-red phase
- Downstream: (N=146) spillover impact exists (3.07% vs. 2.74%)
 - **2.74%** after the onset of all-red phase (4 Red-Light-Running vehicles)
 - **15.75%** within 1 second prior to the all-red phase

Residual impact can be observed from the percentage of red-light-running vehicles

Research findings: Positive impacts

- RLC's effectiveness and evidences of spillover effects

- Reduce the percentage of aggressive driving behaviors at the RLC and its downstream intersections;
- Pressure more drivers to reduce their speeds when passing the RLC and its downstream intersections during the yellow phase;
- Encourage more drivers under the same conditions to take the "stop" decision during the yellow phase at the RLC and its downstream intersections; and
- Decrease the percentage of red-light-running vehicles and the aggressive passing action of drivers (i.e., entering the intersection one second ahead of the all-red phase) at the RLC and its downstream intersections.

Research findings: Negative impacts

- May increase rear-end collisions at some RLC sites?

- May cause some drivers to make improper decisions such as taking a "stop" decision in the "must-go" zone, or exercising the "passing" action in the "must stop" zone; and
- Increase the percentage of drivers in the "must go" zone to take the "stop" action when compared with the same statistics observed at RLC's upstream and downstream intersections.
 - Making the "stop" decision at the "must-go" zone. (12% at MD650; 3.9% at US301)
 - The percentage of drivers taking such wrong decisions at the RLC intersection (e.g., 12% at MD650) is higher than that at the upstream (0.4%) and downstream intersections (6.1%)

Research findings:

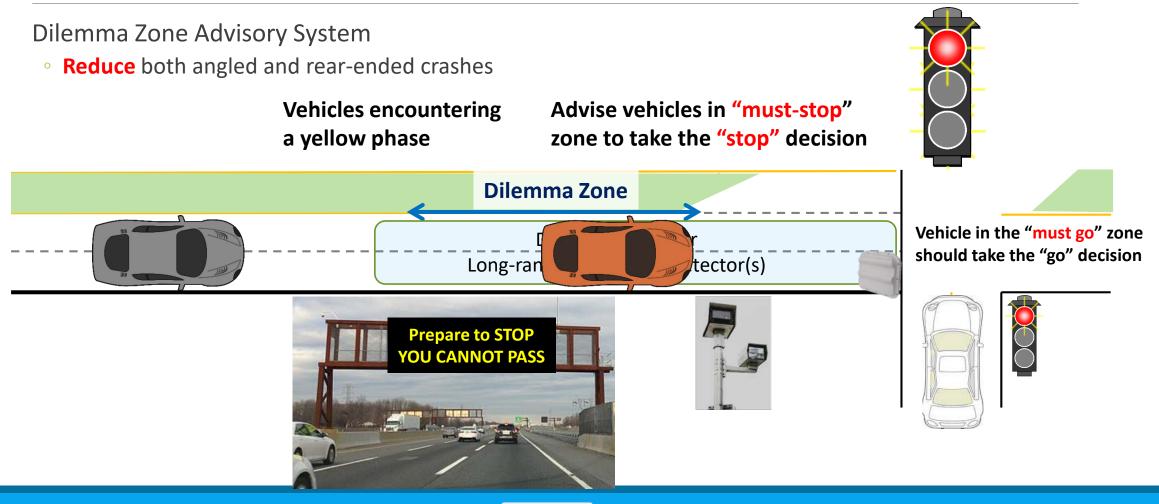
- Compare the RLC effective with ineffective intersections

- Much lower percentage of aggressive drivers (e.g., 9.62% vs. 39.81%);
- A higher percentage of drivers reducing the speed when passing the intersection;
- More significant "spillover" impacts, especially on the percentage of drivers taking the "stop" decision under the same conditions;
- Lower percentage of drivers trapped in the dilemma zone; and
- Relatively low percentage of red-light-running drivers.

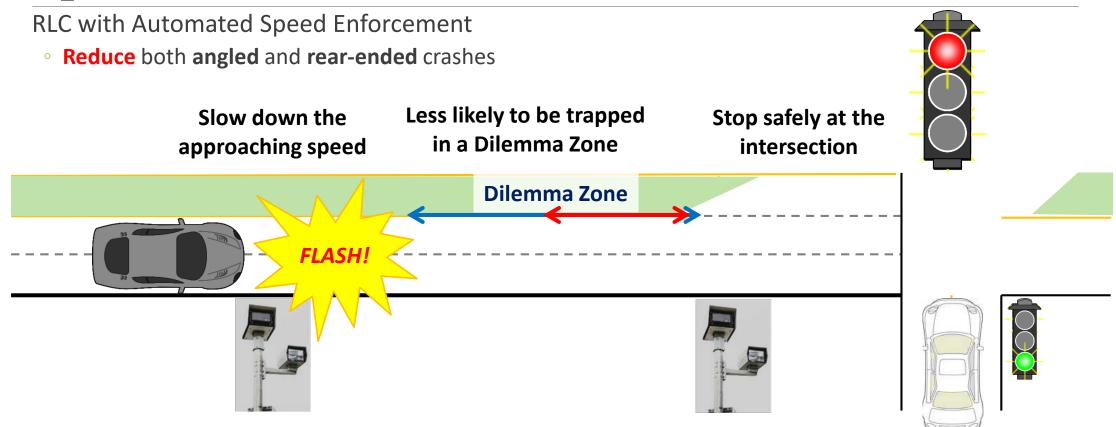


Recommendations:

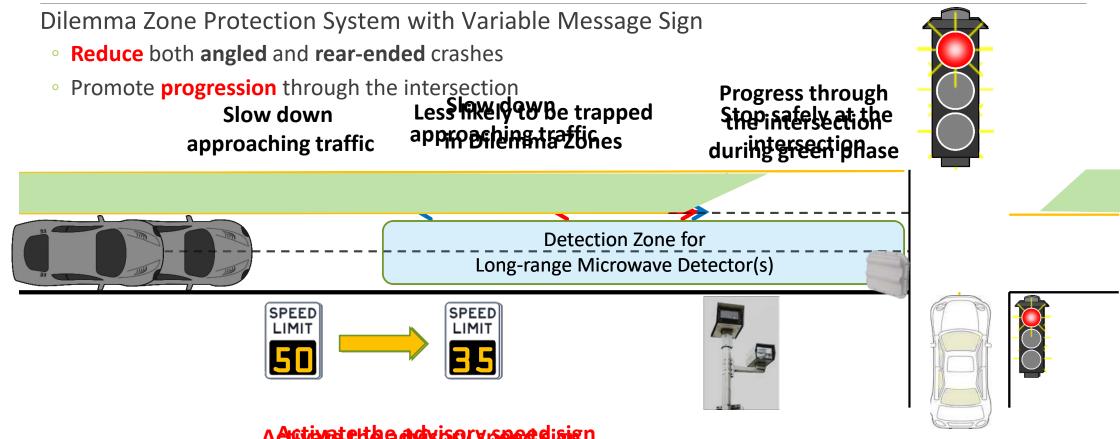
- More empirical observations to have definitive findings and for developing the operational guidelines.
- Need a more effective design to prevent the rear-end collisions.



Design 1: Red-Light Camera with Dilemma Zone Protection System: **Reduce** angled crashes



Design 2: Red-Light Camera with Dilemma Zone Advisory System



Design 3: Red-Light Camera with Automated Speed Enforcement

Design 4: Red-Light Camera with Dilemma Zone Protection System and Variable Message Sign

A Activate the addrisor y seed digign

