Arterial-friendly Local Ramp Metering Control

PER

Project Progress Report 02/26/2020 010

ONE VEHICLE PER GREEN

Type-1 freeway on-ramp

Type-2 freeway on-ramp

Research issues

How to balance the benefits between the freeway and its local intersections near the on-ramps?

How to prevent the on-ramp queue spillback during the peak hours?

How to avoid **queue spillover** at the intersection's turning bays?

How to provide progression for vehicles within the control area, and minimize queues at the boundaries?

System structure

Methodology

Methodology

Key control logic –providing progression for vehicles of all movements within the control area

For Type-2 ramps

Illustration of model application

I-270 @ Exit 1, EB on-ramp

Freeway mainline:

• 2 lanes (excluding HOV lane), 3000 vph

Metered on-ramp:

• 792 ft, one lane

Intersection volume input and turning ratios obtained from ITMS.

Arterial signals

- 90s<cycle<180s
- Lost time: 2 s, Minimum phase duration: 9 s

Study period: 1 hr

Model application: Max. total throughput out of the control area

Input Volume (total=6890 veh) Major throughput under Optimized results

Upgrading the system to real-time operation

Keep current signal timing plan