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SUMMARY

This study presents two models for proactive variable speed limit (VSL) control on a recurrently congested free-
way segment. The proposed model uses embedded traffic flow relations to predict the evolution of congestion pat-
terns over the projected time horizon, and then computes the time-varying optimal speed limit to smooth traffic
flows. To contend with the uncertainties associated with drivers’ responses to VSL control, this study has also pro-
posed an advanced model that further adopts Kalman Filter to enhance the traffic state estimation. Both models
have been investigated with two control objectives—travel time minimization and speed variance minimization.
Our extensive simulation analysis with a VISSIM simulator, calibrated with field data from our previous VSL field
demonstration, has revealed the benefits of the proposed VSL control models. Also, the experimental results indi-
cated that the proposed advanced models with both control objectives can significantly reduce the travel time over
the recurrent bottleneck locations. With respect to several selected measure of effectiveness (MOEs), such as
average number of stops and average travel time, the research results confirm that the control models with
the objective of minimizing speed variance can offer the promising properties for field implementation.
Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recurrent congestion on freeway segments around major metropolitan areas is becoming even more
severe over the recent decades. The formation of traffic queues at recurrently congested bottlenecks
often prevents motorists from fully utilizing the capacity of existing freeway infrastructure. However,
building a new highway has been becoming increasingly difficult because of the diminishing resources
for infrastructure construction. Hence, some operations strategies, such as ramp metering [1–4] and
variable speed limit (VSL) control, have evolved to be promising control methods since the emergence
of Intelligent Transportation System (ITS) in 1990s.
The VSL is initially designed to reduce the speed difference on some hazardous highway segments so

as to decrease the rear-end collisions and improve traffic safety [5–7]. Recently, it has been recognized
that VSL may also offer the potential to mitigate traffic congestion and improve traffic efficiency at
work-zones and freeway bottlenecks. Through dynamically changed speed limits along a controlled
segment, VSL can smooth the speed transition between the upstream and congested downstream flows
to minimize the impact of shockwaves on traffic conditions. The mitigation of traffic speed variance can
also facilitate traffic flows to better utilize the available roadway capacity during peak periods.
Focusing on the work-zone safety, a set of studies has further considered to improve traffic efficiency

with the VSL control logic (Michigan Department of Transportation [8], Lin et al. [9], Kang et al. [10],
Kang [11], Kwon et al. [12], and Fudala and Fontaine [13]). Despite the potential benefits of VSL for work-
zone conditions, most of such systems are exploratory in nature, using relative primitive methods. Hence,
design of reliable algorithms to ensure its benefits in recurrent congestion remains a challenging issue.
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With respect to VSL for recurrent congestion, most existing studies were conducted in simulated en-
vironments. For example, Abdel-Aty et al. [14, 15] developed a VSL system for I-4 through Orlando,
Florida, where relatively simple control strategy was adopted to minimize the difference between the
speed limit and current average speed. Their study reported the reduction in both crash risk and travel
time under a simulated environment. However, because the main control objective was to improve
safety measurement, their savings of travel time was marginal. Hegyi et al. [16, 17] modified the
METANET traffic flow model and incorporated the VSL effect with the model predictive control
(MPC) approach to determine the optimal speed limit. Nearly 20% of travel time reduction has been
reported in their case studies, where the incoming flow rates were assumed to be constant during the
simulation period. Papageorgiou et al. [18] and Carlson et al. [19] analyzed the effect of VSL on ag-
gregated traffic flow behavior from the theoretical perspective and proposed an open-loop integrated
optimal control framework to coordinate ramp metering with VSL control. Their simulation results
showed an improvement in total travel time by 15% if the data for demand patterns are quite reliable.
For potential field applications, they further developed a two-loop local feedback controller to decide
the VSL speed, which yields comparable result in a METANET simulation environment [20]. Using a
modified CTM model, Hadiuzzaman and Qiu [21] proposed a VSL control along with the MPC
method to dynamically change the speed limit during the operations. Their VISSIM simulation
assumed that detectors were placed at every cell to obtain the initial traffic state as the input for
MPC, and the results showed a reduction of 15% in total travel time. More recently, Talebpour
et al. [22] proposed a reactive rule-based speed harmonization strategy to delay or even prevent the
traffic breakdown and conducted a simulation experiment to support the algorithm’s effectiveness in
terms of improving both safety and efficiency. Their study assumed that connected vehicle technolo-
gies are available to obtain each vehicle’s trajectory and to facilitate the early detection of shockwaves.
With respect to VSL field deployment, most of such systems are conducted in Europe, and the

resulting performance varies with each VSL system’s embedded algorithm. For example, the VSL
experiment in Dutch [23] showed no improvement in capacity, which may be attributed to its advisory
nature. Hegyi and Hoogendoorn [24] developed the SPECIALIST algorithm to operate the variable
speed limit, which is designed explicitly to resolve the shockwaves based on a reactive manner. A field
evaluation in Dutch A12 freeway [24] showed that such a function can significantly mitigate the im-
pact of shockwaves, but not reduce the total travel time. Weikl et al. [25] analyzed the data obtained
from German Autobahn A99 near Munich, and concluded that VSL could reduce the shockwave speed
and balance the lane distribution at the cost of slightly reduced capacity. In the US, Chang et al. [26]
reported a successful demonstration of an integrated VSL and travel time information system on MD
100 near Coca-Cola Drive, which found that pairing VSL with a displayed travel time system can
significantly reduce the travel time and increase the throughput over the bottleneck segment.
In brief, most proactive models can outperform reactive control algorithms in terms of improving

traffic flow efficiency. However, some vital technical issues remain to be addressed prior to the com-
prehensive implementation of proactive VSL control methods. For instance, the traffic flow model,
adopted for traffic state estimation/prediction, may not reliably capture dynamic interactions between
all essential system components, such as the blockages at weaving areas and drivers’ non-compliance
to the VSL system. The selected control objective may also affect the performance of a VSL system.
Hence, this study has presented not only a predictive VSL model, but also enhance our proposed
model with a Kalman filter algorithm that enables the VSL system to constantly update the traffic states
produced from the embedded traffic flow models, based on the difference between the previously
predicted traffic states and detected conditions from field traffic sensors. To explore the impacts of a
selected control objective on the VSL’s effectiveness, this study has also investigated two control
objectives with both the base and enhanced models, which are total travel time minimization and speed
variance minimizations.
This paper is organized as follows: The key features of the proposed VSL system are briefly described

in the next section. Formulations of the basic proactive model are introduced in Section 3. Section 4
addresses the design of the traffic state estimator, based on the Kalman filtering methodology, followed
by presentation of the enhanced VSL model. Design of simulation experiments for the performance
evaluation under simulated real-time control environments is reported in Section 5. Conclusions and
future research are summarized in the last section.
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2. VSL SYSTEM DESCRIPTION

As shown in Figure 1, approaching vehicles from upstream segments due to congestion are often
forced to slow down before reaching the bottleneck. The formation of bottleneck may be caused by
various factors, such as lanes reduction or weaving maneuvers from heavy ramp flows. Without proper
control, the approaching vehicles are likely to slow their speeds abruptly just upstream of the bottle-
neck location, thus often dropping from a high-speed (e.g. free-flow speed) to ‘stop-and-go’ conditions
and consequently producing shockwaves to reduce the throughput as well as the speed over the bottle-
neck segment. The VSL proposed in this study is designed to mitigate such impacts so as to best use
the available capacity of the congested segment.
The proposed VSL system consists of detectors, variable speed limit signs, and a central processing

unit to execute control actions. The upstream detector in Figure 1 is used to capture the arrival
flow rate, and the downstream detector is designed to record the discharging rate from the bottleneck.
Also, additional detectors are placed at those on-ramps and off-ramps to record ramp arriving and
departing flows. Several VSL signs along with detectors would be installed between the upstream
and downstream detectors. In a field application, those VSL signs shall dynamically update their
displayed speed limit based on the computed optimal set of speeds and the specified criteria for
VMS display.
Depending on the approaching volume, drivers’ compliance rate, and the resulting congestion along

the target freeway segment, a VSL system’s central processing unit is responsible to produce the time-
varying optimal speed limits. Note that for the safety concern and effective communications with
drivers, all displayed speed limits are supposed to remain unchanged over a specified control horizon.

3. BASIC PROACTIVE CONTROL MODEL

The operational structure of the proposed VSL control system includes the following two principal
components:

• Traffic state model: Given the detected upstream flow rate, the on-ramp and off-ramp flow rate, and
the downstream discharging rate, the model will function to predict the traffic state evolution in each
freeway subsection;

• Optimization model: Based on the estimated conditions from embedded traffic flow model, the
system will execute the optimization model to predict the traffic state in the next prediction horizon
and yield the set of optimal speed limits.

For convenience of discussion, the control variables and parameters are listed in succeeding text:

• Control time and subsection index

- ΔT: Unit time interval to update the traffic flow model;
- TP: Time interval for prediction horizon;
- TC: Time interval for control horizon;
- k: Time interval index for the discrete traffic flow model;

• Network geometric and physical data

- ΔL: Length of each freeway segment;
- ni: Number of lanes in subsection i;

Figure 1. Configuration of a variable speed limit system.
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• Traffic states variables

- qi(k): Transition flow rate entering segment (i + 1) from segment i during interval k;
- ri(k): On-ramp flow rate entering segment i during interval k;
- si(k): Off-ramp flow rate leaving segment i during interval k;
- di(k): Mean traffic density per lane in segment i during interval k;
- ui(k): Mean speed in segment i during interval k;

• Control variables, boundaries and model parameters

- vi(k): Variable speed limit ratio in segment i during interval k;
- dJ: Jam traffic density;
- dc: Critical traffic density;
- uf: Free flow speed;
- δ: Maximum allowable difference for VSL change
- ν, τ, κ, a: Traffic state model parameters;

3.1. Macroscopic traffic flow model

To perform a proactive dynamic VSL control, a reliable prediction model is essential to predict the
traffic state evolution under the detected traffic conditions and driver responses. This study employs
a calibrated traffic flow model to predict traffic conditions over the target time horizon, and to provide
the information for activating the VSL optimization module.
As shown in Figure 2, the target freeway segment is conceptually divided into N subsections with a

unit length of ΔL. While dividing a freeway segment into subsections, the length of each subsection
should be sufficiently long so that vehicles cannot pass one subsection during one-time interval k.
Moreover, each subsection is allowed to have at most one on-ramp and one off-ramp. For each subsec-
tion i, the mean density, di(k), can be determined by the difference between the input and output flows
as follows:

di k þ 1ð Þ ¼ di kð Þ þ ΔT
ΔL*ni

qi�1 kð Þ � qi kð Þ þ ri kð Þ � si kð Þ½ � (1)

For dynamically updating the average speed, ui(k), a well-developed equation proposed by the
METANET model [27] is adopted and shown as follows:

ui k þ 1ð Þ ¼ ui kð Þ þ ΔT
τ

V di kð Þ½ � � ui kð Þf g þ ΔT
ΔL

ui kð Þ ui�1 kð Þ � ui kð Þ½ � � ν�ΔT
τ�ΔL

diþ1 kð Þ � di kð Þ
di kð Þ þ κ

(2)

where, V[di(k)] is the static speed for segment i at time k with respect to the density di(k):

V di kð Þ½ � ¼ uf � exp � 1
a

di kð Þ
dc

� �a� �
(3)

Figure 2. Typical freeway segments.
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Also, the relationship between flow, density, and speed is given by the following:

qi kð Þ ¼ di kð Þui kð Þni (4)

Using the detected inflow rate from the upstream and on-ramp detectors, one can directly use
Equations 1–4 to estimate and predict the traffic state evolution at the target freeway segment.

3.2. Optimization model with prediction

Based on the traffic state at current time interval, one can further implement the traffic flow model
(Equations 1–4) to predict the traffic state within the next prediction horizon with respect to different
speed limits. Then, the one with the best objective output can be selected for implantation. Hence, the
first step of the optimization model is to select a proper control objective function.
As the primary focus of VSL is to increase traffic flow speed and its stability, this study first adopts

the following objective of minimizing of total travel time over the controlled segment:

min ∑
k
∑
i
nidi kð ÞΔT (5)

Note that depending on the response of drivers to the displayed speeds, the embedded macroscopic
traffic flow models and the aforementioned objective function may not fully capture the complex traffic
dynamics and yield the true optimal results.
As reported in the literature [5–7], a proper VSL control can help smooth speed transition and con-

sequently reduce the number of vehicle stops and shockwave impact on the traffic conditions [26].
Hence, this study has further explored the following objective function of minimizing the speed vari-
ance along the target freeway for a VSL control:

min ∑
k
∑
i

ui kð Þ � uaveð Þ2 (6)

where, uave is the average speed of the target freeway stretch, and is given as follows:

uave ¼
∑
k
∑
i
ui kð Þ

Tc=ΔTð Þ�N (7)

To implement the optimization model and select the proper control speed limit for the projected con-
trol period, one shall place the following additional constraints.
For each subsection i, its mean speed shall not exceed the displayed speed limit:

uJ≤ui kð Þ≤uf ; segment i without VSL control;

uJ≤ui kð Þ≤uf vi kð Þ; segment i with VSL control:

�
(8)

where,

0 < vi kð Þ≤1 (9)

One shall also set the density boundaries to reflect the jam density constraint as follows:

0≤di kð Þ≤dJ (10)

Also, for safety concern, the speed variation between consecutive intervals shall be set within the
following boundaries.

�δ≤ufi vi kð Þ � ufi vi k � 1ð Þ≤δ (11)

where, δ is the maximum allowable difference between two successive speeds displayed on VMS.
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Note that the speed variation between consecutive intervals shall be limited within a given range, as
shown in 11. Therefore, the feasible solution set is quite small and one can thus adopt enumerative
search for the optimal solution.

4. ENHANCED PROACTIVE CONTROL MODEL

In reality, the freeway congestion may be caused by many factors aside from an increase in traffic de-
mand. For example, traffic weavings can result in the formation of bottlenecks. Therefore, because of
the limitation of macroscopic traffic flow models, this study has further adopted the Kalman Filter,
which has been proved to be effective for model updating in real-time operations [28]. Kalman Filter
is an optimal state estimator applied to a dynamic system that involves random noise and includes a
limited amount of noisy real-time measurements. The correction and update process of a typical
Kalman Filter process is summarized in Figure 3:
where, y(k) is the estimated traffic state vector:

y kð Þ ¼ q1 kð Þ u1 kð Þ q2 kð Þ u2 kð Þ ⋯ qN kð Þ uN kð Þ½ �T (12)

And u(k) is the system input:

u kð Þ ¼ q0 kð Þ v0 kð Þ qNþ1 kð Þ vNþ1 kð Þ r1 kð Þ⋯ rN kð Þ s1 kð Þ⋯ sN kð Þ� �T
(13)

Also, f(.) represents the traffic flow model shown by Equations 1–4; and z(k) denotes the vector of
measurements. In a typical VSL system shown in Figure 1, it collects three types of measurements in
real time, including freeway flow rate, freeway speed, and on-ramp flow rate.
The measurements z(k) has the following relation with x(k):

z kð Þ¼h y kð Þ; v kð Þð Þ (14)

where, v(k) is the measurement error.
Four important matrices involved in the computations are shown in the succeeding text:
A is the Jacobian matrix of partial derivatives of function f(.) with respect to x:

A i;j½ � ¼
∂f i½ �
∂y j½ �

y k � 1ð Þ; u k � 1ð Þ; 0ð Þ (15)

Figure 3. An Illustration of Kalman Filter Correction and Update Process.
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W is the Jacobian matrix of partial derivatives of function f(.) with respect to process noise w:

W i;j½ � ¼
∂f i½ �
∂w j½ �

y k � 1ð Þ; u k � 1ð Þ; 0ð Þ (16)

H is the Jacobian matrix of partial derivatives of function h(.) with respect to x:

H i;j½ � ¼
∂h i½ �
∂y j½ �

y kð Þ; v kð Þð Þ (17)

V is the Jacobian matrix of partial derivatives of function h(.) with respect to measurement noise v:

V i;j½ � ¼
∂h i½ �
∂v j½ �

y kð Þ; v kð Þð Þ (18)

By using the Kalman Filter, the traffic state at current time interval can be constantly updated based
on the detector data, and the new optimal speed limits can then be generated with the prediction
function in the optimization model.
As mentioned in Section 2, to avoid confusing drivers, the displayed speed limits are not allowed to

change frequently. Therefore, by defining a control horizon TC, the speed limits will remain unchanged
over the specified time interval. Also note that the optimization model will be activated once all detec-
tor data have been updated, where the control horizon is normally set to equal the length of multiple
detector update intervals. Therefore, during each control horizon, the optimization model will produce
multiple estimates of the optimal speed limit, and the process to select the robust one prior to its exe-
cution is shown in the succeeding text.
For example, assuming that both control horizon and prediction horizon are set to be 5minutes and

the detector data is updated at an interval of every minute, then each control interval will have five sets
of estimated optimal speed limits prior to its implementation time, as shown in Figure 4.
Given the set of computed optimal speed limits for the same horizon, {v(1),v(2),…,v(n)}, one can

determine the speed limits to be displayed based on the following procedure:

(1) Define a counter M to identify the moving direction of the speed limit, and then denote vt as the
displayed speed limit of the current horizon, where M is updated by the following expression:

M ¼
M þ 1; if v ið Þ > vt

M; if v ið Þ ¼ vt

M � 1; if v ið Þ < vt

8><
>: ; i ¼ 1; 2;⋯n; (19)

Figure 4. An example of the variable speed limit control strategy.
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(2) The new displayed speed limit for the next horizon will be readjusted with the predetermined in-
crement Δ, based on the value of M:

vtþ1 ¼
vt þ Δ; if M > 0

vt; if M ¼ 0

vt � Δ; if M < 0

8><
>: (20)

In summary, the entire proactive control process includes the following primary steps:

Step 0: Divide the target freeway segment into a set of subsections and then deploy the VSL signs and
detectors; determine the length of control time interval.

Step 1: Apply the Kalman Filter module to revise the predicted traffic conditions produced from the
macroscopic traffic model, and execute the optimization model to generate a new set of optimal
speed limits for each detector update interval.

Step 2: Update the counter M by comparing the new optimal speed limit with the current displayed
speed; see 19.

Step 3: Select the new speed limits to display, based on 20.
Step 4: Stop the VSL operations if traffic flow speed has been recovered to its normal prevailing speed.

The operational flow chart of the VSL control system is presented in Figure 5:

Figure 5. Flow chart of the enhanced proactive model variable speed limit control system.
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5. SYSTEM EVALUATION

5.1. Case description

To evaluate the proposed optimization models, this study selected the segment MD-100 West from
MD 713 to Coca-Cola Drive, our previous VSL field demonstration site, for simulation analysis. On
typical weekdays, the speed during the peak hours usually drops quickly from 60 to 20mph (e.g., in
5minutes) after the onset of congestion, and recovers to about 40mph after passing Coca-Cola Drive.
On the selected freeway segment, our research group implemented two VSL signs, four sensors along
with License-plate-recognition system on Dec. 2009 to Jan 2010. Using the collected field data,
Figure 6(A) illustrates the spatial evolution of traffic flow speeds on the target MD-100 segment.
Obviously, a downstream bottleneck is formed near the 295N off-ramp due to the following contributing
factors: (1) the high traffic volume from the 295N on-ramp can lead to an increase in density on the
downstream segments; and (2) the traffic weaving effect caused by 295N off-ramp volume and 295N
on-ramp volume can significantly impact the vehicle speed due to the short distance between two ramps.
Based on the observed congestion during peak hours, a VSL control system, consisting of one VSL

sign, three freeway detectors and four ramp detectors, was installed between MD 713 and Coca-Cola
Drive. Note that VSL is designed to slow down drivers’ speeds prior to their approaching of the
congestion area (i.e. merging/diverging area). The VSL signs during the experimental period were
located 800 feet upstream of two detected congestion bottlenecks, as shown in Figure 6(B).
The evaluation period was from 6:00–8:00 AM, which corresponds to the morning peak period. As

shown in Figure 6(A), the high-speed traffic, when encountering the downstream congestion, drops its
speed rapidly, causing a significant shockwave impact.
As shown in Figures 7(A)–(D), around 55% of traffic flows came from the upstream segment and

the rest were from the MD 713 and 295N on-ramp. Also, about 15% of the approaching flows took
the route via bottleneck segment to the 295 S off-ramp, and the remaining 85% flows entered the
downstream freeway.

5.2. Model calibration

The macroscopic model presented in Section 3 includes several parameters, which may be location-
dependent. To ensure the key prediction accuracy, this study has calibrated these parameters for the
target freeway segment. The parameters need to be calibrated includes the following: jam traffic

Figure 6. (A) Spatial evolution of traffic flow speeds on the target MD-100 segment. (B) Illustration of freeway
segmentation and variable speed limit location.
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density dJ, critical traffic density dC, free-flow speed uf, and traffic model parameters ν, τ, κ, a. To minimize
the difference between detector measurement and model prediction results, the calibration objective is
set to minimize the performance index defined in the succeeding text:

Min PI ¼ ∑
i
∑
k

qmeasuredi kð Þ � qpredictedi kð Þ
qmeasuredi kð Þ þ qpredictedi kð Þ

					
					

"
þ umeasuredi kð Þ � upredictedi kð Þ

umeasuredi kð Þ þ upredictedi kð Þ

					
					
#

(21)

One can then apply genetic algorithm to search the optimal values of those parameters. The calibra-
tion results are listed as follows:(Table I)
For performance evaluation, the micro-simulation software VISSIM, is used as an unbiased platform

to test the proposed models. Similarly, the key parameters in VISSIM are calibrated with the field data.
For the car-following parameters, the maximum look ahead distance was calibrated to be 1000 feet,
and the CC1 (headway time) was set as 0.80 second. Lane-changing parameters were also calibrated,
where the maximum deceleration is �20.11 ft/s2 for own and �19.85 ft/s2 for trailing vehicle; the
accepted deceleration is�8.27 ft/s2 and�6.63 ft/s2 for own and trailing vehicle, respectively; the waiting

Figure 7. (A) Approaching flows from upstream segment. (B) Approaching flows fromMD 713. (C) Approaching
flows from 295N on-ramp. (D) Leaving flows via 295N off-ramp.

Table I. The calibration results of parameters.

Parameters Calibrated values

dJ (veh/lane/km) 120
dC (veh/lane/km) 30
uf (km/hour) 100
ν (km2/hour) 55
τ (seconds) 36
κ (veh/km) 40
a 2.0
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time before diffusion is 90 seconds. To simulate the on-line VSL control with the proposed proactive
algorithms, this study has developed a VB.NET program to capture the online interaction between
execution of the control algorithm and the time-varying traffic conditions. This mechanism has been
programmed to enable our developed optimal VSL module to communicate with VISSIM during every
simulation interval. Also note that the compliance rate of VSL is assumed to be 100% in this study.
To compare the proposed VSL models with No-control scenario, this study has designed the following

four scenarios:

• BASIC-TTT: the basic proactive model with the objective of total travel time minimization;
• KF-TTT: the enhanced proactive model with the objective of total travel time minimization;
• BASIC-SV: the basic proactive model with the objective of speed variance minimization; and
• KF-SV: the enhanced proactive model with the objective of speed variance minimization.

In the models enhanced with the Kalman Filter, the deviation of measurement errors for the flow rate
and speed are selected as follows:

D εqi kð Þð Þ ¼ 50 veh=h; D rqi kð Þð Þ ¼ 50 veh=h; ∞
D sqi kð Þð Þ ¼ 50 veh=h; D εui kð Þ
 � ¼ 5 km=h;

The deviation of prediction errors for the flow rate and speed are assumed to be

D ξqi kð Þð Þ ¼ 250 veh=h; D ξui kð Þ
 � ¼ 10 km=h:

5.3. Analysis of experimental results

Based on the objective of minimizing the total travel time, Figure 8(A) shows the distribution of mean
speeds at the bottleneck under BASIC-TTT, KF-TTT, and No-control scenario, revealing that the
speeds under different scenarios are identical during the first hour (6:00–7:00 AM) due to the light traf-
fic condition. However, during the peak hour (7:00–8:00 AM), the traffic demands increase signifi-
cantly and result in the downstream congestion. Comparing these three scenarios, one can observe
that both BASIC-TTT and KF-TTT can slightly offer a higher speed during the congestion period
(7:15–7:45 AM), and recover the dropped speed more quickly at the rest period (7:45–8:00 AM) com-
pared with the No-VSL control scenario. Also, KF-TTT can outperform BASIC-TTT (without using
the Kalman Filter for update), which is due likely to its deficiency in offering an accurate traffic pre-
diction and consequently unable to generate effective control speeds.
Figure 8(B) shows mean speed evolution with the control objective of minimizing speed variance at

the bottleneck. Obviously, KF-SV is able to maintain a stable and much higher bottleneck speed,
starting from beginning of the traffic congestion period (7:00–8:00 AM). Compared with the No-
Control scenario, the BASIC-SV model was able to keep a higher speed at the congestion period
(7:15–7:25 AM), but lost its efficiency during the remaining period. The reason, as stated previously,
is that the basic model is unable to capture the rapidly changing traffic condition and to revise the
speed limit in time during the on-line applications. Among all scenarios, the KF models with their pro-
active nature can always outperform the Basic models. Therefore, this study has further investigated
the properties of these two KF models with different objective functions, and the results are shown
in Figure 8 (C). The obtained values of speed limit from different scenarios over the control time pe-
riod is given by Figure 9.
As a major measure of effectiveness (MOE) to evaluate traffic efficiency, the time-dependent travel

time can clearly reflect the effectiveness of each control strategy. Figure 10(A) presents the resulting
travel time from these two models with the objective of minimizing travel time and the No-VSL
scenario. Notably, the travel time starts to increase when the freeway is becoming congested (after
7:00 AM). Compared with the No-control scenario, the average travel time is reduced under the
KF-TTT model, demonstrating the benefits under the VSL control. However, the benefit of VSL with
BASIC-TTT is not significant. The reason is that without the Kalman Filter Correction, the macro-
scopic traffic flow model cannot fully capture the occurrence of congestion caused by traffic weaving
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effect at the downstream bottleneck. From Figure 10(B), it is clear that both speed variance minimization
models can reduce the travel time during the congested period (7:00–8:00 AM). Also, the KF-SV model
clearly outperforms the BASIC-SV model.
A further comparison between two KF models is shown in Figure 10(C). Note that during the period

6:45–7:15 AM, the KF-TTT model produces a lower travel time than the KF-SV model. However, as
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Figure 9. The values of speed limit by different variable speed limit control models.

(A). Bottleneck Mean speed: BASIC-TTT, KF-TTT v. s.  No-VSL scenario

(B). Bottleneck Mean speed: BASIC-SV, KF-SV v. s. No-VSL scenario

(C). Bottleneck Mean speed: KF-TTT, KF-SV v. s. No-VSL scenario 
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Figure 8. (A) Bottleneck Mean speed: BASIC-TTT, KF-TTT versus No-VSL scenario. (B) Bottleneck Mean speed:
BASIC-SV, KF-SV versus No-VSL scenario. (C) BottleneckMean speed: KF-TTT, KF-SV versus No-VSL scenario.
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the congestion increases from 7:15 AM, the KF-SV model begins to show better performance. To under-
stand this interesting finding, we further analyzed the simulation process and found out that the KF-SV
model is more sensitive to the change in traffic conditions, and it can immediately adjust the speed limit
in advance even during the moderate congested period. The capability to adjust speed in time can reduce
the flow rate to the downstream segments and consequently mitigate the potential shockwave impact.
Table II summarizes the MOEs for all scenarios. To prevent the randomness of results, the data have

been averaged over five simulation replications. Moreover, to distinguish the performance between the

(A). Time-dependent travel time: BASIC-TTT, KF-TTT v. s. No-VSL scenario
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(B). Time-dependent travel time: BASIC-SV, KF-SV v. s. No-VSL scenario 

(C). Time-dependent travel time: KF-TTT, KF-SV v. s. No-VSL scenario
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Figure 10. (A) Time-dependent travel time: BASIC-TTT, KF-TTT versus No variable speed limit (VSL) scenario.
(B) Time-dependent travel time: BASIC-SV, KF-SV versus No-VSL scenario. (C) Time-dependent travel time:

KF-TTT, KF-SV versus No-VSL scenario.

Table II. Performance comparison between different scenarios.

Scenario
6:00–8:00

Ave. # of stops
7:00–8:00

Ave. # of stops
6:00–8:00

Ave. travel time (s)
7:00–8:00

Ave. travel time (s) Speed SD (km/hr)

No-VSL 6.3 / 10.5 / 214.6 / 306.5 / 19.3 /
BASIC-TTT 5.6 �11.1% 9.2 �12.4% 208.7 �2.7% 294.9 �3.8% 18.4 �4.7%
KF-TTT 4.7 �25.4% 7.8 �25.7% 191.4 �10.8% 267.7 �12.7% 17.1 �11.4%
BASIC-SV 4.8 �23.8% 7.9 �24.8% 193.2 �10.0% 270.0 �11.9% 17.5 �9.3%
KF-SV 4.1 �34.9% 6.5 �38.1% 185.0 �13.8% 250.1 �18.4% 16.4 �15.0%

Ave., average; VSL, variable speed limit; TTT, total travel time minimization; SV, speed variance.
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congested (7:00–8:00 AM) and uncongested periods (6:00–7:00 AM), Table II shows the overall results
over the entire period and over the congested period. Notably, all proposed models can yield signifi-
cant reduction in total travel time, vehicle stops and standard deviation of speed. Among those four,
KF-SV model is the best one, which yields a reduction of 36.6% on the vehicle stops, 14.7% on the
average travel time and 4.7% on speed difference during the 2-hour period. KF-TTT model with its
dynamic update function outperforms BASIC-SV, and achieves a reduction in vehicle stops, travel
time, and speed variance, respectively, by 25.4%, 10.8%, and 11.4%.
In brief, one can tentatively reach the following preliminary conclusions from the aforementioned

extensive experimental analysis:

• A proper VSL system can effectively reduce the number of stops and travel time over a recurrently
congested freeway segment.

• The macroscopic traffic flow model cannot fully capture the occurrence of congestion caused by traffic
weavings, as reflected by the travel time and number of stops produced by the models without KF.

• The accuracy of the predicted traffic congestion can significantly affect the effectiveness of a VSL control
system, as evidenced by the superior performance of those two models with an embedded KF functions.

• Also, speed variance minimization seems to be a better control objective, as the speed data is directly
measurable from detectors and is the most sensitive variable to the VSL control. And the speed var-
iance minimization model is less sensitive to the prediction accuracy, as reflected in the performance
evaluation results.

Note that drivers’ compliance rate is assumed as 100% in this case study, which is often not true in prac-
tice. According to the field observations from literature, the studies have investigated a wide range of
drivers’ compliance rate from 20% to 80% at different sites. Hence, to ensure the operational effectiveness
of a VSL control system, one shall account for the impact caused by the compliance rate in practice. One
possible way is to incorporate a real-time feedback control function to dynamically adjust the obtained
optimal speed limit based on the detected compliance rate. However, how to model such impacts in the
optimization model is still a challenge issue, which might be one of our primary future tasks.

6. CONCLUSIONS AND FUTURE RESEARCH

In summary, this study has proposed two proactive VSL control models for use on recurrently
congested freeway segments. The basic proactive model used the embedded traffic flow relations to
predict the evolution of congestion pattern and compute the optimal speed limit. To contend with the
difficulty in capturing driver responses to VSL control, this study has also proposed an advanced model
with an embedded Kalman Filter function. Both models have been investigated with different traffic
conditions and control objectives. The results of extensive VISSIM simulation have revealed that both
proactive VSL control models can significantly reduce the travel time and the number of vehicle stops
over recurrent bottleneck locations at MD 100, and the one using minimizing speed variance as its
control objective clearly outperforms other models, as reflected in the performance evaluation results.
Despite the promising performance of our proposed models at this exploratory stage, the authors fully

recognize that much remains to be carried out on this subject. One of our on-going tasks is to calibrate
drivers response parameters based on more field data. Also, the sensitivity of model performance to the
traffic measurement errors is not answered yet in this study. Other on-going research tasks associated with
VSL implementation include: exploring the potential of using control objectives to provide trade-off
between operation and safety performance, identification of optimal detector locations for updating traffic
conditions, and assessment of the road emissions produced by different VSL control systems.

7. LIST OF ABBREVIATIONS

VSL variable speed limit
ITS intelligent transportation system
MPC model predictive control
CTM cell transmission model
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