Design and Field evaluation of the Dilemma Zone Protection System (DZPS) at US 40 \& MD 910C

By Traffic Safety and Operations Lab

- Location overview
- Accidents history
- Field data collection (pre-deployment)
- Field implementation
- Key activities and issues
- Field data collection (post-deployment)
- Evaluation of Short-term impacts
- Speeds, acceleration/deceleration rates, decisions of drivers, distributions of dilemma zones
- Performance evaluation
- Summary of findings

Location Overview

- US 40@ Western Maryland Parkway
- 4 -lanes divided highway (US 40), 3 approach lanes for Western Maryland Parkway (2-left, 1-right)
- Isolated intersection
- 55 mph speed limit
- Ramp from I-81 for eastbound

- 5\% HV

Accident History

- Historical accidents data (2011 ~2013)
- 7 crashes potentially related to dilemma zone decisions for 3 years (side-angle crashes)
- 3 injuries

Field Data Collection (before deployment)

- 4 video camcorders with two reference points
- $900 \mathrm{ft}, 650 \mathrm{ft}, 500 \mathrm{ft}$, and 200ft
- 1 camcorder for the stop line and the signal
- Data Collection Period
- Oct 10 ${ }^{\text {th }} 2014$ from 11:30 AM to 12:30 PM and 3:00 PM to 6:00 PM
- Data Processing
- Video times are synced with the GPS satellite time

900 ft video capture

signal video capture

Field Deployment of the system

- Two sensors on EB on US 40
- EB sensor1: Green Extension, Allred Extension
- EB sensor 2: All-red Extension
- One sensor on WB on US 40
- WB sensor 1: Green Extension

Key deployment Activities

- Check the sensor's function
- Validate the speed and location of approaching vehicle with sensor data
- Checked whether or not the sensor sending proper calls to the signal controller
- Using camcorders to record and measure signal timings
- Identify if there are all-red extension calls from the recorded video
- Identify red-light running vehicles
- Compare all-red extensions and red-light running vehicles to identify missed calls, false alarm, and correct calls

DZPS Activated on Oct 13, 2016

Evaluation of the Short-Term impacts

- Purposes:
- To evaluate the effectiveness of the system
- Impacts on driver behaviors and traffic conditions
- The performance of DZPS with respect to preventing side-crash accidents.

Impacts by the roadside sensors?

US 40 @ MD
910C

- Impacts on the traffic?
- any change in the Speed?
- any change in acceleration/decelerati on rates?
- any change on decisions of drivers during the yellow phase?

Field Data Collection after deployment

Date	Time	Veh ID	Speed	Location	Signal	Date	Time	Veh ID	Speed	Location	Signal
$10 / 14 / 2016$	$57: 55.9$	28168	49	510	Green	$10 / 14 / 2016$	$57: 59.7$	28168	48	245	Yellow
$10 / 14 / 2016$	$57: 56.1$	28168	49	500	Green	$10 / 14 / 2016$	$57: 59.8$	28168	48	235	Yellow
$10 / 14 / 2016$	$57: 56.3$	28168	49	490	Green	$10 / 14 / 2016$	$58: 00.0$	28168	48	225	Yellow
$10 / 14 / 2016$	$57: 56.4$	28168	49	480	Green	$10 / 14 / 2016$	$58: 00.1$	28168	48	220	Yellow
$10 / 14 / 2016$	$57: 56.5$	28168	49	465	Green	$10 / 14 / 2016$	$58: 00.3$	28168	48	205	Yellow
$10 / 14 / 2016$	$57: 56.7$	28168	49	455	Yellow	$10 / 14 / 2016$	$58: 00.5$	28168	47	195	Yellow
$10 / 14 / 2016$	$57: 56.9$	28168	49	445	Yellow	$10 / 14 / 2016$	$58: 00.6$	28168	47	185	Yellow
$10 / 14 / 2016$	$57: 57.0$	28168	49	430	Yellow	$10 / 14 / 2016$	$58: 00.7$	28168	47	175	Yellow
$10 / 14 / 2016$	$57: 57.2$	28168	49	420	Yellow	$10 / 14 / 2016$	$58: 00.9$	28168	47	160	Yellow
$10 / 14 / 2016$	$57: 57.3$	28168	50	410	Yellow	$10 / 14 / 2016$	$58: 01.1$	28168	47	150	Yellow
$10 / 14 / 2016$	$57: 57.5$	28168	50	395	Yellow	$10 / 14 / 2016$	$58: 01.2$	28168	46	140	Yellow
$10 / 14 / 2016$	$57: 57.6$	28168	50	385	Yellow	$10 / 14 / 2016$	$58: 01.4$	28168	46	135	Yellow
$10 / 14 / 2016$	$57: 57.8$	28168	50	375	Yellow	$10 / 14 / 2016$	$58: 01.5$	28168	46	120	Yellow
$10 / 14 / 2016$	$57: 57.9$	28168	50	360	Yellow	$10 / 14 / 2016$	$58: 01.7$	28168	46	115	Red
$10 / 14 / 2016$	$57: 58.1$	28168	50	350	Yellow	$10 / 14 / 2016$	$58: 01.8$	28168	46	105	Red
$10 / 14 / 2016$	$57: 58.3$	28168	49	345	Yellow	$10 / 14 / 2016$	$58: 02.0$	28168	46	90	Red
$10 / 14 / 2016$	$57: 58.4$	28168	48	335	Yellow	$10 / 14 / 2016$	$58: 02.2$	28168	45	80	Red
$10 / 14 / 2016$	$57: 58.6$	28168	48	325	Yellow	$10 / 14 / 2016$	$58: 02.3$	28168	45	70	Red
$10 / 14 / 2016$	$57: 58.7$	28168	48	315	Yellow	$10 / 14 / 2016$	$58: 02.5$	28168	45	65	Red
$10 / 14 / 2016$	$57: 58.9$	28168	48	305	Yellow	$10 / 14 / 2016$	$58: 02.6$	28168	45	55	Red
$10 / 14 / 2016$	$57: 59.1$	28168	48	290	Yellow	$10 / 14 / 2016$	$58: 02.8$	28168	45	40	Red
$10 / 14 / 2016$	$57: 59.2$	28168	48	280	Yellow	$10 / 14 / 2016$	$58: 02.9$	28168	45	30	Red
$10 / 14 / 2016$	$57: 59.3$	28168	48	270	Yellow	$10 / 14 / 2016$	$58: 03.1$	28168	45	20	Red
$10 / 14 / 2016$	$57: 59.5$	28168	48	260	Yellow	$10 / 14 / 2016$	$58: 03.3$	28168	45	10	Red

- Signal timings
- camcorders
- Traffic speeds and locations
- sensors
- Six-day day for decisions of drivers during the yellow phase
- One day for system performance

Impacts on Traffic Flow Speed

Average Speed for different locations

- Average speed reduced at 900 feet and 200 feet
- Not very significant reduction at 500 feet

Location	900 feet		500 feet		200 feet	
Data Collection Period	Before	After	Before	After	Before	After
Average speed (mph)	49.7	44.6	46.4	45.33	40	34.9
Standard Deviation	10.6	6.24	6.7	6.95	9.07	10.48
Minimum speed (mph)	18.9	23	10.9	12	4.58	4
Maximum speed (mph)	74.1	75	69.4	67	61.2	60
Sample Size	1233	2943	1371	3000	1343	3000

Impacts on Traffic Flow Speed

Cumulative Speed Distribution 900 Feet

- Percentage of the high-speed drivers (above speed limit at 900 feet) reduced from 29 \% to 16%
- Vehicles Slowdown when they approaching the intersection

Speed	Before		After	
	Framuncy	Dercentoce	Eramuency	Dercontaco
75+	14	1\%	0	0\%
70-75	36	3\%	3	0\%
65-70	58	5\%	6	0\%
60-65	92	7\%	94	3\%
55-60*	160	13\%	375	13\%
50-55	189	15\%	850	29\%
45-50	206	17\%	951	32\%
40-45	236	19\%	432	15\%
35-40	153	12\%	166	6\%
30-35	68	6\%	56	2\%
25-30	19	2\%	10	0\%
Over Speed Limit (total)	360 (1231)	29\%	478 (2943)	16\%
* Speed limit: 55 MPH				

Distribution of the dilemma zones

Distributions of the dilemma zone Before and After the deployment

- Deceleration rate
- Before the deployment: $--7.28 \mathrm{ft} / \mathrm{s}^{2}$
- After the deployment: $-11.27 \mathrm{ft} / \mathrm{s}^{2}$
- Maximum length of the DZ
- Before the deployment: 960 feet
- After the deployment: 670 feet
- Distributions of the DZ reduced

Drivers' decisions during the yellow phase

Moderate Speed (45-55 MPH)

High Speed (55+ MPH)

- More drivers at moderate speeds choose "STOP" decisions (below or around speed limit)
- Not significant impact on high-speed drivers

Speed of vehicle on set of yellow (sample size)	Location of vehicles from stop line onset of yellow									
	0-100 ft		100-200 ft		200-300 ft		300-400 ft		400+ ft	
	Before	After								
45-55 mph	$\begin{gathered} 100 \% \\ (78) \end{gathered}$	$\begin{gathered} 100 \% \\ (24) \end{gathered}$	$\begin{aligned} & 100 \% \\ & (100) \end{aligned}$	$\begin{aligned} & 94 \% \\ & (32) \end{aligned}$	$\begin{aligned} & 74 \% \\ & (73) \end{aligned}$	$\begin{aligned} & 59 \% \\ & (41) \end{aligned}$	$\begin{aligned} & 50 \% \\ & (24) \end{aligned}$	$\begin{array}{r} 43 \% \\ (40) \end{array}$	$\begin{gathered} 20 \% \\ (5) \end{gathered}$	$\begin{gathered} 5 \% \\ (59) \end{gathered}$
55+ mph	$\begin{gathered} 100 \% \\ (9) \end{gathered}$	100% (7)	$\begin{gathered} 100 \% \\ (20) \end{gathered}$	$\begin{gathered} 100 \% \\ (9) \end{gathered}$	$\begin{aligned} & 88 \% \\ & (47) \end{aligned}$	$\begin{aligned} & 91 \% \\ & (22) \end{aligned}$	$\begin{aligned} & 50 \% \\ & (16) \end{aligned}$	$\begin{aligned} & 54 \% \\ & (13) \end{aligned}$	$\begin{aligned} & 10 \% \\ & (20) \end{aligned}$	$\begin{gathered} 9 \% \\ (44) \end{gathered}$
*1: Field: percentage of drivers taking the "Pass" decision from the field observations *2: the number in parenthesis denotes the sample size.										

Safety evaluation with the total length of Dilemma zone

$$
x_{d z}=x_{c}-x_{0}=v_{0} \delta_{2}+\frac{v_{0}^{2}}{2 a_{2}^{*}}-v_{0} \tau+(w+L)-\frac{1}{2} a_{1}^{*}\left(\tau-\delta_{1}\right)^{2}
$$

where:
$x_{c}=$ the critical distance for a smooth stopunder the maximum develeration rate;
$x_{0}=$ the critical distance for "intersection clearance" under the maximum acceleration rate;
$\tau=$ duration of the yellow interval;
$\delta_{1}=$ reaction time - lag of the driver - vehicle complex;
$\delta_{2}=$ decision - making time of a driver;
$v_{0}=$ approach speed of vehicles;
$a_{1}=$ average vehicle accerlaeration rate;
$a_{1}^{*}=$ maximum accerleration rate of the approaching vehicles;
$a_{2}=$ average vehicle deceleration rate;
$a_{2}^{*}=$ maximum deceleration rate of the approaching vehicles;
$w=$ intersection width; and
$L=$ average vehicle length.

- Total length of the dilemma zone weighted by volume in each speed bin

$$
D Z_{L}=\sum L_{i} * \frac{\text { Vol }_{i}}{\text { Vol }_{\text {Total }}}
$$

L_{i} is the length of the dilemma zone for $i^{\text {th }}$ speed bin $V o l_{i}$ is the number of the volume in the $i^{\text {th }}$ speed bin Vol $_{\text {Total }}$ is the total number of vehicle

- Before: 73 feet and After: 44 feet
- 40% reduction

Performance Evaluation on Detection and Activation

Summary of Findings

- Deployed DPZS can

- Reduce the average approaching vehicle speed
- Reduce the percentage of high-speed vehicles
- Encourage drivers to take the "stop" action during the yellow phase
- High-Speed vehicles
- Are more likely to be reduced
- Side-street vehicles are protected by all-red extensions

