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Although average effective vehicle length (AEVL) has been recognized 
as one of the most popular methods for detecting data errors, how to set 
proper thresholds so as to prevent false alarms and missed detections 
remains a challenging ongoing issue. This study proposed a sequential 
screening algorithm that employed multiple comparisons with the best 
statistics to compare concurrently the estimated AEVLs between lanes 
and stations for assessment of the data quality of a target detector. 
With both the temporal and spatial information, the proposed method 
can reliably generate a confidence interval and determine whether the 
target detector is malfunctioning or in need of calibration. The pro-
posed algorithm was tested with 2 weeks of detector data from Ocean 
City, Maryland. The analysis results demonstrate the effectiveness of 
the proposed sequential screening algorithm and its potential for field 
applications.

Different types of traffic detectors, such as loop, radar, and video 
detectors, have been widely deployed at freeways and major urban 
arterials to support advanced traffic management systems and 
advanced traveler information systems (1). However, most existing 
studies have shown that, because of the lack of maintenance and cal-
ibration, data errors inevitably exist in most surveillance systems, 
and this lack prevents effective applications of most control strate-
gies (2–4). Hence, a well-designed screening algorithm to identify 
detector quality is essential for any advanced traffic management 
systems deployment.

Since the 1970s, a large number of studies have been devoted to 
detection of sensor errors. Most existing screening algorithms can 
be divided into two categories: (a) microscopic algorithms to iden-
tify the errors in the hardware through analysis of abnormal signal 
patterns and (b) macroscopic algorithms based on aggregated traffic 
flow relationships (such as flow, occupancy, and speed).

At the microscopic level, Chen and May (3) and Coifman (5) 
have conducted studies to test average actuation time of detectors. 
Recently, Lee and Coifman proposed some algorithms to assess the 
sensitivity of detectors (6) and to identify their pulse breakup errors (7) 
as well as splashover errors (8). Cheevarunothai et al. developed a 
system to collect data on detector events and then corrected dual loop 
sensitivity errors on the basis of the event data (9). Corey et al. further 

used a Gaussian mixture model to fit the distribution of detector 
actuation times and then implemented the Gaussian mixture model 
to correct the errors (10).

At the macroscopic level, several threshold methods related to 
single traffic variables have been proposed to rule out the most obvi-
ous errors. In 1976, Payne et al. introduced several single-variable 
thresholds for 5-min volume, occupancy, and speed data to identify 
malfunctioned sensors when they developed incident detection algo-
rithms (11). Payne and Thompson later proposed 13 checking rules 
on 30-s and 5-min volume, occupancy, and speed data by using the 
I-880 database (2). Along with the development of traffic flow theory, 
some researchers used mathematical relationships between traffic 
flow variables to perform diagnosis of detector quality. For example, 
Jacobson et al. (12) and Cleghorn et al. (13) applied the thresh-
old method to multiple traffic variables. They proposed to use the  
volume–occupancy ratio threshold for different occupancy regions 
for which the data will be regarded as invalid if the computed value is 
beyond the predefined threshold for that region. In addition, time series 
detector data could also be incorporated into the screening algorithm 
as temporal supplemental information. Additional spatial relation-
ships from direct upstream and downstream detectors on neigh-
boring lanes could also be used to uncover hidden errors (14–16).  
Chen et al. developed a daily-statistics algorithm that uses whole-
day time series data to define four statistics and their corresponding 
thresholds (15). If any statistic is above its threshold, the loop is set 
as malfunctioning for that day. Nihan considered the vehicles stored 
between two detector stations and concluded that, if the number of 
stored vehicles keeps increasing or decreasing over a 24-h period, 
either of these two neighboring detectors may have yielded unreliable 
volume data (14).

After 2000, most researchers have devoted their efforts to error 
screening for dual loop detectors. Following the same classification 
of algorithms as for single loop detectors, Turochy and Smith’s algo-
rithm could be classified in the category of multiple-variable thresh-
old (4), and the methods by Al-Deek and Chandra (17), Achillides  
and Bullock (18), and Vanajakshi and Rilett (19) would belong to the 
temporal–spatial information class. Most of those studies adopted 
average effective vehicle length (AEVL) to check the erroneous 
data. Since its introduction, AEVL has shown its effectiveness in 
uncovering some hidden errors that could pass the regular single- or 
multiple-threshold tests or both. Vanajakshi and Rilett considered 
the consistency of cumulative volume data between nearby stations 
and proposed an optimization method to correct the imbalance 
value (19).

In most existing studies, when the estimated AEVLs exceed the 
defined threshold, the corresponding detected data may be classified 

Algorithm for Detector-Error  
Screening on Basis of Temporal  
and Spatial Information

Yang (Carl) Lu, Xianfeng Yang, and Gang-Len Chang

Department of Civil and Environmental Engineering, University of Maryland,  
College Park, 1173 Glenn L. Martin Hall, College Park, MD 20742. Corresponding 
author: Y. Lu, yanglu@umd.edu.



Lu, Yang, and Chang 41

as inaccurate. However, one critical issue to be addressed is selec-
tion of the threshold for AEVL. Failing to select a proper threshold 
may cause the algorithm to yield significant false alarms or a num-
ber of missed detections. Unfortunately, guidelines to define such 
thresholds for AEVL to indicate the boundaries of erroneous data 
are not available in the literature. Furthermore, differences in vehicle 
compositions and their lane use distributions can cause difficulty in 
selecting proper thresholds.

With the same logic of AEVL, this study presents a sequential 
algorithm that employs both temporal and spatial information within 
and between detector stations to evaluate the quality of detector data. 
With the embedded test multiple comparison with the best (MCB), 
one can concurrently compare the AEVLs estimated from all travel 
lanes and between stations and establish a robust confidence inter-
val for performance. The evaluation process will enable responsible 
agencies to effectively identify detectors as malfunctioning or in 
need of maintenance and calibration.

Methodology

By application of the concept of AEVL, the proposed algorithm 
for assessing detector quality consists of the following three stages:

Stage 1. Preliminary check of data abnormalities with traffic flow 
characteristics,

Stage 2. Statistical test and comparison of the computed AEVLs 
between neighboring lanes and stations, and

Stage 3. Spatial comparison of the estimated AEVLs with further 
upstream and downstream stations.

A graphical description of the stages of the detection process is 
shown in Figure 1.

Stage 1. Preliminary data Check

At the first stage, the proposed algorithm will activate the following 
checks by using basic traffic flow characteristics:

•	 Flow threshold check. The detected flow rate shall lie within 
the following range:

≤ ≤q qd0 (1)max

where qd is the detected flow rate per lane by the data aggregation 
interval and qmax is the maximal flow rate under the given geomet-
ric conditions. Equation 1 is used to identify loop detector errors 
caused by pulse breakup in heavy traffic. In practice, qmax per minute 
is set to be 51 vehicles per lane, corresponding to the hourly flow 
of 3,060 vehicles per hour per lane. This threshold shall vary with 
roadway and traffic conditions.
•	 Occupancy threshold check. The detected occupancy shall also 

lie within the following range:

≤ ≤o od0 (2)max

where od is the obtained occupancy rate (as a percentage) per lane 
of the target detector and omax is the maximum occupancy rate (e.g., 
95% in practice). This check can help find a detector’s errors from 
being stuck in the on position.

•	 Speed threshold check. The detected speed shall be below the 
maximum speed threshold, as shown in Equation 3:

≤ ≤v vd0 (3)max

where vd is the measured speed per lane and vmax is the maximum phys-
ical speed on the target roadway segment (e.g., 100 mph for the study 
site). This stage can catch some obvious speed measurement errors.

A further check with the speed–density–flow rate relationships can 
also be conducted to assess detector quality. For example, the detected 
flow rate cannot be positive when the detected speed equals zero.

Stage 2. Statistical Comparison

Figure 2 illustrates the procedure for the statistical comparison, for 
which the AEVL computed from the target detector (the midbottom, 
crosshatched one) is first compared with other sensors (the midupper 
two) in the same station (Figure 2a) and then with its direct upstream 
and downstream detectors (Figure 2b).

Same-Station Comparison

The AEVL for detector quality test is defined as follows:
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The core logic of the proposed algorithm is that no statistical dif-
ference in the estimated AEVLs shall exist between adjacent lanes 
or between neighboring stations. Such a comparison shall be based 
on both the temporal information (i.e., 1-day data) and spatial data 
(i.e., adjacent lanes and stations).

Given the temporal and spatial information, Figure 3 shows the 
sequential steps for comparing the estimated AEVLs within each 
detector station. By selecting the data that pass the preliminary 
check, the whole data set will be further divided into a set of groups 
by different times of day (e.g., 30 min per interval for each group in 
the case study). Then, the mean and variance of the estimated AEVL 
for each lane of each group can be computed as follows:
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where

 S2 = mean estimate of variance,
 k = time interval,
 m = lane number, and
 nk,m = sample size from lane m in group k.
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FIGURE 1  Flowchart of screening algorithm.

As Figure 3 shows, Step 4 is to compare the AEVL estimated 
from different lanes within the same station. Because a pairwise 
comparison between lanes may be quite cumbersome if the roadway 
segment contains multiple travel lanes (e.g., C 2

4 combinations for 
four lanes), this study proposes a new method, the MCB method, 
which can concurrently compare the target lane with multiple 

adjacent lanes and form a confidence interval for statistical assess-
ment (20). An obtained confidence interval containing 0 indicates 
that no significant difference in AEVL exists between the target and 
the other lanes and vice versa.

The advantage of MCB over the traditional pairwise comparison 
is that it can significantly reduce the number of comparisons from  
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k
2( ) to k, where k is the number of lanes. The confidence interval for 

concurrent comparison with MCB can be calculated with Equation 7:
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where

 i = target lane,
 l = other lanes in same station,
 ni = sample size of lane i, and
	α = significance level.

The value of parameter T varies with the number of lanes, sample 
size, and the level of significance, which is available from statistics 
tables in Hochberg and Tamhane (21).

By taking one detector station with three lanes, for example, 
seven types of potential comparison results with the proposed MCB 
are summarized in Figure 4.

Figure 4a shows the performance of a perfectly functioning 
detector, reflecting no significant difference between the three esti-
mated AEVLs from different lanes because their confidence inter-
vals include zero. Thus, no data error can be concluded from this 
case. However, one possible exception is that all detectors in the 
three lanes are concurrently malfunctioning. Figure 4, b through g, 
show six types of potential errors that are based on the MCB results; 
for these errors, one detector may produce a higher or lower AEVL 
compared with that of the others. However, as they depend on driv-
ing patterns and vehicle distributions, the AEVL test results shown 
in Figure 4 may not be the result of detector malfunction but due 
to the concentration of heavy vehicles on some particular lanes. For 
example, most trucks may use the rightmost lane on a freeway seg-
ment, and the imbalanced distribution of heavy vehicles can result in 
a difference in AEVLs between lanes. Hence, further statistical tests 
among nearby stations are necessary to confirm the evaluation results.

Between-Station Comparison

For further verification of the preliminary conclusions from the in- 
station comparisons, one should also conduct a spatial AEVL com-
parison between the target detector and its upstream and downstream  
detectors. With respect to the two types of results generated from the in-
station comparisons (Figure 4), the screening decision trees incorporated  
with the between-station comparisons are shown in Figures 5 and 6.

If no statistical difference is found from the within-station com-
parison, one could tentatively reach two types of conclusions: (a) all 
detectors in the target station can provide reliable data and (b) all 
detectors in the target station are malfunctioning so that errors can-
not be found by the comparison. Hence, by using the data from 
each lane’s upstream and downstream detectors, a further between-
station comparison can help identify potential data errors. As Fig-
ure 5 shows, all detectors within the target stations will be identified 
as having potential errors if their AEVLs are significantly larger or 
smaller than the AEVLs of their upstream and downstream detectors.

Upstream Target Downstream Upstream Target Downstream

(a) (b)

FIGURE 2  Procedure of statistical comparison for detectors: (a) with sensors in same station and 
(b) with direct upstream and downstream detectors.

Step 0.
Define targeted data set: 

One day per lane data of each station
(pass the previous tests)

Step 1.
Divide the data set into groups, which contains 30 

min per lane data

Step 2.
For each group, calculate the mean and variance of 

AEVLs per lane

Step 3.
Compare the estimated AEVL for each lane 

with MCB method

Step 4.
Decide which type of test would be implemented

in the between-station comparison

FIGURE 3  Comparison of AEVL within same station 
(by lane).
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FIGURE 4  MCB results within same station, by lane (CI 5 confidence interval).
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If the results of the within-station test indicate that the AEVL from 
one lane is larger (or smaller) than the others (Figure 6), two possible 
scenarios may exist: (a) the detector in the target lane (e.g., Lane 1 in 
Figure 6) cannot function properly or (b) the target detector is in good 
condition, but all other detectors in the same station (e.g., Lanes 2 
and 3 in Figure 6) have malfunctioned. The first possible condition 
could be proved if the results from the between-station comparison 
shows that the AEVL from the target lane is also larger (or smaller) 
than the AEVLs from its upstream and downstream detectors. The 
second possible condition will be confirmed if the AEVLs from all 
other lanes are found smaller (or larger) than the AEVLs estimated 
from their corresponding upstream and downstream lanes.

Stage 3. third-level Check

In the case that the nearest neighboring sensors are known to suffer 
severe quality problems, one can further adopt the upstream and 
downstream stations to perform the spatial comparisons as shown 
in Figure 7, where the stations are numbered 1 to 5 from left to right, 
with No. 3 being the target station.

For example, in Figure 7a, because Station 4 has quality issues, 
one can use its upstream (No. 2) or further downstream (No. 5) 
station to perform the test; the same holds true for the cases in Fig-
ure 7b, for which Station 1 or 4 (as Station 2 has problems) and, 
in Figure 1, for which Stations 1 and 5 (as Stations 2 and 4 have 
problems) can be used. This additional level of check is applicable 
only to the location where geometric and traffic conditions between 
neighboring stations have no significant difference.

CaSe Study

This section illustrates an application of the proposed algorithm to 
the surveillance system in Ocean City, Maryland, and discusses its 
effectiveness in evaluating detector quality.

Flow
Direction

(a)

(b)

(c)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

FIGURE 7  Comparison with further upstream and downstream 
stations.

data Site

As Figure 8 shows, the Traffic Safety and Operations Labora-
tory at the University of Maryland, College Park, in collaboration 
with Maryland State Highway Administration, deployed a traffic 
monitoring system for the Ocean City region and provided real-
time travel time information updated every minute for US-50 and 
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MD-90 (22). The surveillance system contains 43 sensors for the 
entire region; among these, 35 are Wavetronix SmartSensor HDs 
that use dual radars to capture speed information, and eight are 
SmartSensor 105s that function as a single loop does. Sixteen sen-
sors (five 105s, 11 HD) and eight sensors (all HD) are along US-50 
and MD-90, respectively. Because most of US-50 has two lanes in 
each direction, one can use a simple paired t-test for the between-
lane AEVL comparison. However, MD-90 has only one lane in each 
direction, so only the between-station comparison with the proposed 
MCB is necessary. This study uses 1-min data over 2 weeks for the HD 
sensors along US-50 and MD-90 to conduct the test. These 2 weeks 
were August 6 to 12, 2012, to represent the peak season and Febru-
ary 18 to 24, 2013, to represent the off-peak season. The locations of 
these sensors are shown in Figure 8.

Malfunction distribution with Stage 1 evaluation

After the Stage 1 evaluation is performed, the detector status can 
be classified into three types: no error, error, and missing data. “No 
error” means that the detector passes all tests in Stage 1 sequentially. 
The “error” type suggests that the detector fails the proposed single- 
and multiple-threshold tests and indicates that the detector needs 
either maintenance or calibration. The term “missing data” refers to 
no data reported for that time period.

Distribution of detector status for the Stage 1 test for Ocean City 
is shown in Table 1.

From Table 1, one can see that the overall condition of the detectors 
is acceptable because more than 91% of the data points are correct. 
Missing data seem to be the most obvious problem, which is caused 
mainly by wireless misconnection and low battery to support the solar-
panel power. If one further splits the data set into US-50 and MD-90, 
one see that the sensors in US-50 obviously have better data quality 
than those in MD-90 with respect to every performance measure.

Malfunction distribution with Stage 2 evaluation

After the Stage 2 test, several data originally classified into the 
no-error group can be further classified as a potential data quality 

problem, which indicates that the target detector may not produce 
reliable data even though its produced speed, occupancy, and flow 
rate are within the feasible range. As Table 2 shows, around 5% of 
the detector records may have potential quality problems, reflecting 
the need to conduct rigorous calibration.

After evaluation of the overall performance, the evaluation focus 
centers on the quality of each sensor to identify the one with the high-
est error rate. With the following procedures, the problematic sensors 
can be viewed as being in need of further maintenance and calibration.

The evaluation results associated with each sensor’s quality are 
shown in Figure 9, in which Detectors 115 to 127 belong to US-50 
and the rest to MD-90. The results in Figure 9 reveal the following 
findings:

1. Detectors 115, 120, 139, 138, 136, and 131 have severe com-
munication problems, evidenced by their high percentage of missing 
data. For example, Detector 120 has about 40% missing data.

2. Because a large portion of Detector 120’s data are missing, 
the rate of identified potential errors at its neighboring detectors 
(i.e., Detectors 118 and 122) are extremely low. The between-station 

TABLE 1  Distribution of Detector Status for Stage 1 Evaluation

Total US-50 MD-90

Detector Status Number of Records Percentage Number of Records Percentage Number of Records Percentage

No error 425,040 91.67 298,146 92.43 126,891 89.92

Error 375  0.08 117  0.04 258  0.18

Missing data 38,265  8.25 24,294  7.53 13,971  9.90

TABLE 2  Distribution Detector Status for Stage 2 Evaluation

Total US-50 MD-90

Detector Status Number of Records Percentage Number of Records Percentage Number of Records Percentage

No error 404,153 87.16 288,333 89.39 115,820 82.07

Error 375  0.08 117  0.04 258  0.18

Missing data 38,265  8.25 24,294  7.53 13,971  9.90

Potential data  
  quality problem

20,887  4.50 9,816  3.04 11,071  7.85 
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FIGURE 9  Error rates for each sensor after Stage 2 evaluation.
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comparison requires the information from upstream and downstream 
detectors. Hence, the large missing data at Detector 120 can cause 
the comparisons with its neighboring detectors to be meaningless.

3. Three neighboring detectors, 139, 138, and 136 along MD-90 
show the likelihood of having malfunctioned and need further 
investigation to verify their actual conditions.

4. Because detectors at the boundaries do not have neighboring 
stations at one side, the test for between-station comparisons cannot 
be conducted.

Necessity of Including Stage 3 evaluation

The second and third findings of the preceding section both suggest 
the need for conducting a Stage 3 check. As Detectors 118 and 122 
exhibit a potential error rate that is quite low, one should conduct the 
Stage 3 test to verify the status of their quality. Here, Detector 118 is 
compared with Detectors 117 and 122 and Detector 122 with Detec-
tors 118 and 124. The results before and after the Stage 3 check are 
shown in Table 3.

The results of the Stage 3 test clearly indicate that both Detector 
118 and 122 indeed produce reliable data.

The third finding is Detectors 139, 138, and 136 have severe 
problems. Then, comparing them does not make sense. Instead, 
one should consider using the farther normal sensors to join the 
between-station tests to avoid potential false alarms. Detectors 139, 
138, and 136 are all compared with Detectors 11 and 134 in the 
between-station test. The comparison results with and without the 
additional check are shown in Table 4.

After the potential data quality row from Table 4 is examined, one 
can see that before the Stage 3 check, the results from the Stage 2 
test yield some false alarms for Detectors 139 and 138, and several 
potential data quality problems were not identified for Detector 136. 
Hence, the Stage 3 check could help reduce the percentage of both 
Types I and II errors. The same pattern can be found for each sensor 

along MD-90, except for Detector 136, which showed a much lower 
AEVL value. And the revised status distribution for all detectors is 
updated in Figure 10.

CoNCluSIoNS

This study has presented a sequential screening algorithm for reli-
able classification of detector data into three categories: missing data, 
errors, and potential errors, which means that a detector needs to be 
maintained or calibrated. The proposed algorithm, with its embed-
ded MCB tests, is capable of distinguishing malfunctioning detectors 
from detectors in need of calibration or maintenance. Hence, proper 
use of the proposed algorithm can help responsible highway agen-
cies to best maintain their detector systems with minimum resource 
needs. An application of the proposed method into Ocean City has 
proved its potential for use in real-world applications.
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