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Abstract 

 
This study presents a robust algorithm that can deal with the incomplete volume information so as to 

significantly improve the estimation accuracy. To tackle the inevitable measurement data error or only 
partially available information, the proposed robust algorithm converts each model input data into one 
interval with its upper and lower bounds best approximated from historical data or/and prior knowledge. 
A simulated system, the I-95 freeway corridor between I-495 and I-695, has been created to generate 
example data and to perform the numerical evaluation of the developed robust algorithm. 
 
Introduction 
 

Due to the increasing needs of using the O-D information for a variety of planning and operation 
studies, transportation researchers over the past decades have devoted considerable efforts in developing 
effective approaches for reliably estimating O-D demands either in a static or a time-varying format. Most 
existing advanced approaches [1-7, 10-13, 15-18, 20-21] for such a need require the use of a set of 
initial/prior O-D and ramp/mainline volumes as model inputs. Depending on the available information 
and the network structure, the O-D patterns estimated with those approaches may result in a large 
variance, and insufficient reliability to use in practice. Besides, many of those essential data may not be 
available in a real world network. Hence, it is imperative that any developed system for such applications 
be sufficiently robust to accommodate to real world operational constraints. 

In general, link volume data are assumed to be available and do not contain measurement errors. The 
quality of such information, however, may impact the estimation accuracy. The assumption of having 
accurate link volume data is often subject to challenge, as a large amount of traffic volumes from 
detectors for dynamic O-D estimation are constantly suffering from the hardware quality deficiency. The 
issue of having unreliable link volume data is especially critical for a large network as its formulations for 
O-D estimation generally contain a significant number of unknown system parameters. Depending on the 
information availability and the network structure, the O-D patterns estimated with those approaches may 
result in a large variance, and insufficient reliability for use in practice [15]. To contend with such 
deficiencies, this study develops a dynamic O-D model that employs an interval-based estimation 
algorithm to account for measurement variances in network link volumes, which may vary significantly 
from their mean volumes used in the existing O-D estimation models. 

The remaining of the paper is organized as follows. A basic dynamic O-D estimation model for a 
freeway corridor is presented in the next section. Section 3 illustrates an interval-based solution algorithm 
to contend with input volume variance. Extensive numerical analyses for evaluating the effectiveness of 
the proposed solution algorithms are presented in Section 4. Conclusions and further enhancements are 
summarized in the last section. 
 
A Basic Model Formulation for Dynamic O-D Estimation 
 

Consider a typical freeway corridor with link count information as shown in Figure 1, where detectors 
are deployed at on-ramps, off-ramps and mainline links. The information that is readily available for 
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estimation of its time-dependent O-D flow proportion or dynamic O-D distribution is the time series of 
entering flow, qi(k), exiting flow, yj(k), and mainline flow, Ul(k). 
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Figure 1. A Typical Freeway Corridor 

 
Let bij(k) denote the proportion of vehicles entering from origin i to destination j during time interval 

k. By definition, it is subject to the following two natural constraints: 
0 ?  bij(k) ?  1, 0 ?  i < j ?  N (1) 

?
??

?
N

1ij
ij 1)k(b , i = 0, 1, ..., N-1 (2) 

As shown in Figure 1, the freeway corridor consists of N segments from 0 to N-1 and the set of 
variables used in modeling the dynamic traffic flow and O-D relationships is defined as follows: 

q0(k) : The number of vehicles entering the upstream boundary of the freeway section during time interval k. 
qi(k) : The number of vehicles entering freeway from on-ramp i during time interval k, i = 1, 2, …, N-1. 
yj(k) : The number of vehicles leaving freeway from off-ramp j during time interval k, j = 1, 2, …, N-1. 
yn(k) : The mainline volume at the downstream end of the freeway section during time interval k. 
Ui(k) : The number of vehicles crossing the upstream boundary of segment i during time interval k, i = 1, : 2, …, 

N-1. 
Tij(k) : The number of vehicles entering the freeway from on-ramp i during time interval k that are destined to off-

ramp j (i.e., the time-dependent O-D flow), where 0 ?   i < j ?  N. 
t0 : The length of one unit time interval. 

tij(k) : The average travel time from on-ramp i to off-ramp j departing during time interval k. 
? ij(k) : The standard deviation of the travel time for vehicles traveling from on-ramp i to off-ramp j : departing 

during time interval k. 
bij(k) : The proportion of q i(k) heading toward destination node j during time interval k. 

? m
ij(k) : The fraction of Tij(k-m) vehicles departing from entry node i during time interval k that takes m time 

intervals to exiting node j. 
? m

ilj(k) : The fraction of Tij(k-m) trips from entry node i during time interval k that takes m time intervals to 
mainline node l. 

Lin and Chang [15] assumed that the travel time of drivers departing from node i during time interval 
k to node j follows a normal distribution, i.e., N[? ij(k), ? 2

ij(k)]. Since the travel time for an O-D pair 
departing during the same time interval follows a normal distribution, ? m

ij(k) can be replaced with the 
following cumulative density function of a time interval, m. 
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where fij(x) is the density function of the travel time distribution with mean )k(t ij  and standard deviation 

? ij(k). By applying the above travel time distribution concept, the relationships between ramp volumes 
and O-D proportions, and the relationships between mainline volumes and O-D proportions can be 
written as: 
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where ?ilj is the ratio of the distance dil, to the distance dij. In addition to the use of a normal distribution to 
capture the variation of travel times among drivers of the same departure time, one can also estimate the 
average )k(bij  for consecutive intervals, instead of solving the O-D flow distribution matrix for each 
small interval [7]. This is proposed to reduce the number of unknown parameters. With this 
enhancements, one can estimate the average travel time for each O-D pair with data provided by a 
surveillance system, and let the O-D proportions, )k(b ij , and standard deviations,? ij(k) be the unknown 
set of parameters. 
 
An Interval-Based Algorithm for Dynamic O-D Estimation 
 

This section presents an enhanced solution algorithm that can estimate an O-D matrix under the 
circumstance that its traffic volumes are subjected to some level of measurement errors. In most existing 
approaches, the unknown parameters, bij(k) and ? ij(k), are assumed to follow the random walk process: 
bij(k+1) = bij(k) + wij(k) and ? ij(k+1) = ? ij(k) + vij(k), where the random terms, wij(k) and vij(k) are 
independent Gaussian white noise sequences with zero mean and covariance. 

To facilitate the formulations, the variables are defined as: b(k) = [bij(k)], ? (k) = [? ij(k)], W(k) = [ 
wij(k], and V(k) = [ vij(k]. Thus, the matrix forms are as follows: 

b(k+1)=b(k)+W(k) and ? (k+1)=? (k)+V(k) (9) 
With the above refinements for b(k) and ? (k), Equations (5) and (6) can be restructured into the 
following matrix form: 

Z(k)=H[? ij(k)]?b(k)+e(k) (10) 
where Z(k) T

1N1N11N21 )]k(q)k(U),...,k(q)k(U);k(y),...,k(y),k(y[ ?? ??? , H[? ij(k)] ]h[ k
rs?  is a matrix 

with its entries given by the corresponding coefficients in Equations (5) and (6), and e(k) is an 
observation noise vector, where R=Var[e(k)]=diag[r1,…,r2N-1] is a diagonal positive definite matrix. 
Through Equations (9)-(10), a canonical state-space system model has been established. Such a system 
equation can be solved with any solution algorithm, such as the Kalman filtering or the minimum least 
squares estimation algorithms. 

The matrices Z(k) and H(k) in Equation (10) consist of the time-series measurement of traffic 
volumes, qi(k), yi(k) and Ui(k). If the traffic volume information is not precisely known due to 
measurement errors and progressively changes over time, most existing solution algorithms will not be 
applicable. The interval-based solution algorithm presented hereafter is proposed for contending with 
such a critical issue. Suppose that these two uncertain matrices of Z(k) and H(k) are only known to be 
bounded, one then can rewrite their relations as follows: 

ZI(k)=[Z(k)-|? Z(k)|, Z(k)+| ? Z(k)|] (11) 
HI(k)=[H(k)-|? H(k)|, H(k)+| ? H(k)|] (12) 

where |? Z(k)| and |? H(k)| are the positive constant bounds for those unknowns. Hence, Equation (10) can 
be written as an interval representation: 

ZI(k)=HI(k)?b(k)+e(k) (13) 
Equation (13) along with Equation (9) forms a generalized state space system, in which the volumes are 
treated as intervals rather than constants. To apply the interval-based solution algorithm for the dynamic 
O-D estimation, the most challenge part is to ensure that the natural constraints of the system model as 
shown in Equations (1) and (2) can be held during the recursive computing process. As reported in the 
literature [16], most studies employ the methods of truncation and normalization to tackle this difficult 
issue. To incorporate the above concepts in developing the algorithm for the proposed formulations, one 
needs to modify the truncation and normalization process as follows: 
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? Modified Truncation Process 
Note that the purpose of the truncation is to find the largest step of improvement for the unknown 

parameters b and ?  for the next time interval so that the O-D proportions, bij, can still satisfy Equation (1). 
To incorporate this concept in developing the solution algorithm, it is essential that the truncation process 
be restated as follows: 
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where ?  is a value, which represents the largest step of improvement so that all the possible values of bij 
can satisfy Equation (1). 
 
? Modified Normalization Process 

The normalization step is employed to satisfy Equation (2), which means that the sum of the O-D 
proportions from the same origin is equal to one. This constraint is not applicable to the interval 
formulations. Since I

ijb  is an interval, many possible combinations could satisfy this constraint. It is not 
necessary that either the sum of the lower bound or the sum of the upper bound be equal to one as there 
exists several possible combinations. In such a case, the estimated O-D proportions are valid as long as 
there exist combinations that can satisfy the constraint. Hence, one can formulate such relationships with 
the following equations: 

1b0
N

1mj

1n
mj ?? ?

??

? ,  i = 0, 1, …, N-1 (21) 
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1n
mj ??
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? ,  i = 0, 1, …, N-1 (22) 

The Equation (15) is to ensure that the sum of the lower bound, 1n
mjb ? , for O-D proportions with the 

same origin is equal to or less than one, and Equation (16) is to let the sum of the upper bound, 1n
mjb ? , for 

O-D proportions with the same origin be equal or larger than one. If all the O-D proportions satisfy these 
two constraints, it is guaranteed that there exists at least one combination that can satisfy Equation (2). 
With Equations (9) and (13), one can construct a dynamic model for O-D estimation that takes into 
account potential measurement errors. This formulation system treats the traffic volumes as intervals so it 
consists of the upper and lower bound in the system equations. To solve such formulations, one may 
simply employ the standard solution algorithm, such as the standard Kalman filtering algorithm, for these 
two system equations. However, the results with those existing estimation algorithms do not encompass 
all possible optimal solutions for the interval system formulations. Hence, this study employs the interval 
Kalman f iltering scheme [8] to develop an interval-based solution algorithm. 

Due to the nonlinear nature of the formulations and the concern of computing efficiency, this study 
has employed sequential extended Kalman filtering algorithm [9] and Gumbel distribution (an 
approximation of normal distribution) to develop a solution algorithm. A major part of the interval-based 
solution algorithm for the formulations of Equations (9) and (13) with the Interval Kalman Filtering 
method is presented below: 
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Numerical Examples 
 

This section presents the numerical evaluation results of the proposed algorithm using the I-95 
northbound freeway corridor between two major beltways, I-495 and I-695. For computing efficiency, 
each interchange is represented with a pair of on-ramp and off-ramp, and the network is thus reduced to 7 
pairs of on-ramps and off-ramps, and 36 O-D sets as shown in Figure 2. 

I-495 I-695
MD-212 MD-198 MD-216 MD-32 MD-175 MD-100 I-895 I-195

q0 y8

N

U1 U7U6U5U4U3U2

q1y1 q2y2 q3y3 q4y4 q5y5 q6y6 y7 q7

 
Figure 2. A Graphical Illustration of the Main Interchanges for the I-95 Corridor 

 
To generate a meaningful data set for numerical analysis, the example freeway system under the 

assigned time series O-D percentages was simulated with AIMSUN 4.0 [19], to produce time-dependent 
link traffic volumes. The simulation was executed for one hour using the dynamic O-Ds at an interval of 2 
minutes. Following the simulation, one can obtain volume information for each link and the average 
travel time information for each O-D pair. In this example, the ramp/mainline volumes are added with 
measurement errors for up to 10%. To conduct an evaluation for the proposed algorithms, a series of 
time-varying O-D sets estimated with the extended Kalman filtering algorithm (i.e., Algorithm-1) 
presented by Lin and Chang [14] is set as a basis to compare with the results from the proposed interval-
based algorithm (i.e., Algorithm-2). Figure 3 illustrates the graphical results from Algorithm-1 and 
Algorithm-2 along with the true O-D set. As shown in Figure 3, the interval-based algorithm (Algorithm-
2) outperforms Algorithm-1. 

b07

0

0.1

0.2

0.3

0 5 10 15 20 25 30
Time Interval

O-D 
Proportion

Algorithm-1 Algorithm-2 TRUE

 
Figure 3. The Estimation Results for Scenario-2 (b07) 

 
Table 1 shows the statistical results, of which the absolute error is computed for each O-D pair in 

every time interval. In addition to the time-average absolute error for every O-D pair, the maximum and 
minimum are chosen as the evaluation criteria. As shown in Table 1, the proposed algorithm (Algorithm-
2) outperforms the commonly used algorithm (Algorithm-1) with the improvements of more than 30%. 
 

Table 1. The Statistical Results and Improvements  
Algorithm-1 Algorithm-2 Improvement 

Average Max. Min. Average Max. Min. Average Max. Min. 
0.0679 0.1433 0.0225 0.0432 0.0968 0.0121 36.38% 32.45% 46.22% 

 
Conclusions and Recommendations 

 
This study has developed a robust algorithm to contend with the inevitable measurement errors 

embedded in most traffic sensors. This study has also performed the evaluation of the proposed algorithm 
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using a large freeway network, the I-95 freeway corridor between I-495 and I-695 in Maryland. The 
results have revealed that the estimated time-varying O-D proportions for this example freeway corridor 
are more reliable due to the use of the interval-based algorithm. One of the critical issues remains to be 
investigated in the area of dynamic O-D estimation is to compute the reliability level a model can provide 
with the available information. 
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