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Abstract 

This paper has investigated critical issues associated with Optimal Detector 
Locations for OD matrix estimation, including a discussion of limitations embedded 
in existing models and heuristic algorithms. Grounded on the core methodology of 
existing literature (Yang, 1998), this paper has proposed a heuristic algorithm for 
identifying the optimal set of detector locations under a given budget constraint for 
effective OD matrix estimation. The algorithm tries to simultaneously optimize OD 
coverage, net OD flow intercepted and link-OD flow fraction. Our numerical 
experiment results have indicated that the proposed algorithm is quite promising for 
potential applications. 
 

Background and Problem Nature 

As is well recognized, OD matrix, depending on its nature, plays a key role in both 
urban planning and traffic control. Since the actual distribution of traffic demands is 
extremely difficult to obtain in practice, the methodology of estimating OD matrix 
from traffic counts has received increasing attention over past decades. Examples of 
methods for such applications include Least Square models, Entropy Maximization 
models, Likelihood Maximization models, etc. (Bell, 1991)  

Due to the budget constraints in practice for collecting traffic volumes at 
every link and intersection approach, the estimation quality of existing methods 
depends significantly upon the locations of traffic counting stations in the network  
(Lam, 1990; Yang, 1991). Thus, how to identify the optimal set of locations for OD 
estimation under the budget constraints has emerged as one of the imperative 
research and implementation issues.                     1
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              This critical problem can be stated specifically as follows. Based on certain 
assignment rules or models, the true OD matrix TM , with its entry T

ijm  indicating 
the actual traffic demand from origin i  to destination j , is loaded on the network. 
Accordingly, each link a  obtains a traffic count av . Using a subset of these traffic 
counts },{ Lava ∈ as constraints, an estimated OD matrix EM  can be solved with 
existing OD estimation methods. The core research issue in this paper is how to 
identify such a subset of links L , olL ≤ , so that the quality of EM  can be 
optimized. 

Note that the complexity of this critical issue is compounded by the fact that 
we generally do not have a true OD matrix TM  for any real-world network for 
comparison. Thus how to define the quality of an estimated OD matrix EM  is also a 
challenging task. A research to directly integrate OD estimation uncertainty is now 
undertaken. In this paper, we will simply lend from the method proposed by Yang 
(1998), which substitutes the direct measure of estimated OD matrix quality by some 
related indices.  
 

Literature Review and Research Objectives 

In review of location optimization related literature, it appears that most models for 
the optimal facility location are formulated to intercept a maximum number of 
customer flows (Larson, 1981; Hodgson, 1990; Berman, 1992).  For instance, to 
relax the assumption of knowing all path flows in their early model, Berman et al. 
(1995) formulated an average-reward Markov decision process that requires only the 
knowledge of turning fractions at each node and all originating demands.  

As for location selections related to OD estimation, most early pioneering 
studies on this regard, such as random selection method and major link selection 
method (Han, 1983), are intuitive in nature. Logie and Hynd (1990) in later years 
proposed the OD coverage method, and Lam and Lo (1990) in the same period also 
proposed some heuristic procedures to identify the sequence for network link 
selection. 

Among existing studies, one of the most effective methods was proposed by 
Yang and Zhou (1998), who, based on the concept of maximal possible relative error 
(MPRE) and some numerical results, designed four rules to locate traffic counting 
detectors (i.e., OD covering rule, maximal flow fraction rule, maximal flow-
intercepting rule, and link independence rule). Using these rules instead of defining 
the quality of OD estimation directly, they formulated the following two methods: (1) 
A LP model to maximize the net traffic flows intercepted while keeping all OD pairs 
covered, and (2) an application of Berman’s model (1995) to formulate the entire 
problem as an average-reward Markov Decision Process with the objective of 
maximizing the net captured flows.  

Grounded on Yang and Zhou’s results (1998), Yim and Lam (1998) later 
formulated one LP model to maximize both the net and the total captured flows. An 
approximate heuristic algorithm was also proposed as an alternative approach in their 
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work. To distinguish, net flows here means the sum of link flows after excluding 
double counting effects, while total flows means the sum of link flows including 
double counting effects. 

Despite the promising properties of Yang and Zhou’s method, one of the 
most advanced studies on this research issue, there are some embedded limitations to 
be overcome. For example, Yang and Zhou’s models intend to maximize the net 
traffic flows intercepted by traffic counting detectors. Such an objective function has 
the inherent limitation that the net flow intercepted has an apparent upper bound, 
namely the total flow on the network F .  

Thus, when the number of locations in the constraint 0l  is larger than the 

“desirable number” optL , the minimal number of links to cover the total flow F , the 
model cannot guide the selection of other detector locations after the objective 
function has reached the upper bound. This indicates that the remaining links may be 
selected arbitrarily and the resulting quality of the estimated OD matrix will be 
degraded accordingly.  

For example, as showed in Figure 1, Yang and Zhou’s heuristic gives 
1=optL  by selecting link 3 and the objective function reaches its upper bound 210. 

Consider 20 =l  and the true / target OD given in Table 1. The sum of squared errors 
for OD estimation by selecting another link along with link 3, computed with the 
OLS model, is given in Table 2, which clearly indicates that the resulting quality of 
estimated OD matrix varies significantly with the selected links.  

To circum the above limitation, Yim and Lam (1998) established the rule of 
maximal total captured flow based on Yang and Zhou’s previous analysis.  This rule 
indicates that more total flows intercepted will lead to higher estimation reliability 
when the same amount of net flows is intercepted. However, this rule does not 
always hold. Sometimes more gross flows can lead to lower estimation reliability 
when the same amount of net flows is intercepted.  

A counter example is given to facilitate the discussion. Based on the same 
true OD matrix and target OD matrix in Table 1, the sum of squared errors for OD 
estimation computed by the OLS model and the resulting net and gross flow 
intercepted are given in Table 3. As shown in the Table 3, although all the groups of 
links intercept an equal amount of net flows, the estimation quality does not exhibit a 
correlation with the gross flows intercepted. For instance, set }1,3{  intercepts 38.1% 
more gross flows than set }2,1{ , but both sets have about the same estimation quality. 
Similarly, set }2,3{  intercepts 25.9% more gross flows than set }4,3{ , but has a 
lower estimation quality. Hence, introducing gross flows into the original model may 
not improve the estimation results.  

Besides, Yang and Zhou (1998) proposed the following heuristic greedy 
algorithm to determine the desirable number and locations of counting detectors. 
Defining the set of all paths as R , their algorithm assumes the knowledge of all path 
flows },{ Rrfr ∈  and a coverage matrix ][ rab=B , where 1=rab  if link a  is on path 
r , and 0 otherwise. Thus link flows can be expressed as  

∑
∈

==
Rr

arraa fbv Bf  
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Where f  is a row vector of path flows and aB  is the ath  column vector of coverage 
matrix B . Links are then selected in a descending order of their carried flows so as 
to maximize the total flows intercepted. Besides, to exclude double counting effects 
and to keep link flows independent, their algorithm revises the path flow vector f  
after selecting a link by changing all the path flows intercepted by this link to zero. 
Accordingly, flows on all of the remaining links are also revised.  

If there is no constraint on the total number of counting locations, this 
algorithm will yield a location vector optL  that can observe all flows traveling 
through the network, which is the maximal net flow that can possibly be intercepted. 
This optimal location vector optL  can also cover all OD pairs and keep link flows 
independent of each other. 

The authors also claimed that this algorithm could be used as a heuristic to 
solve the problem with budget constraints. But when the number of counting 
locations 0l  is less than the desirable number optL , which is obtained without 
budget constraints, the result may be somewhat undesirable when employing the OD 
covering rule. 

More specifically, this heuristic algorithm tries to maximize the net traffic 
flows intercepted by accumulating path flows. In the selection of links, 
considerations are only given to the amount of flows carried by paths passing this 
link, which contains no information on the OD pair correlated. Thus, when the 
number of counting locations is less than the desired number, some path flows may 
not be accumulated even if they are the only source for OD information between 
certain OD pairs. This implies that the estimation result for these omitted OD pairs 
may have an unbounded range of errors. 

A simple example is given in Figure 2 where 20 =l . Apparently, the 
algorithm will select link (path) 1 and 2 and leave OD pair 2OD  uncovered. The 
result has violated the OD covering rule. 
 
An Enhancement Algorithm 

In view of above-mentioned limitations in the existing literature, this study, grounded 
on the core concept by Yang (1998), has proposed an efficient algorithm to contend 
with the critical detector location issue. 

To satisfy the OD covering rule, the core of our proposed idea is: (1) first to 
check the minimal number of links that can cover all OD pairs minl  so as to 
recognize a too low budget constraint 0l ; and then (2) to check the number of OD 
pairs to be covered when selecting links for locating detectors.  

More specifically, we define the total number of OD pairs as W , and the 

number of OD pairs already covered after selecting l  links as 
l

W . If 

llWW
l

−<− 0 , namely the number of OD pairs to be covered is less than the 
number of locations to be selected, then we shall select the thl )1( +  links according 
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to Yang’s algorithm. Otherwise, check if some new OD pairs are covered by the 
newly selected link. If this link provides no information on new OD pair, it shall be 
denied, and the next link shall be selected and checked in the same manner.  If 

0min ll <  but no solution satisfying OD covering rule is found, the current solution 
shall be revised by deleting the selected link covering the least number of new OD 
pairs and adding the unselected link covering the most number of new OD pairs.  

To solve the scenario in which the net flow intercepted has reached its upper 
bound but the number of selected links remains below the budget constraint 0l , the 
basic idea is: (1) first to check the minimal number of links that can intercept all net 
flow optL ; and (2) if 0lLopt < , then to include all links in optL  and to select 
additional links according the maximal flow fraction rule.  
 
The logic flow of the proposed heuristic is described as follows: 
Step 0: Initialization.  

Build path flows vector f  and coverage matrix B . 
Set W  as the total number of OD pairs, counter 0=l , and 0=

l
W .  

Step 1: Basic Judgment. 
Solve for the minimal number of links covering all OD pairs minl .  
Solve for the minimal set of links intercepting all net flow optL . 
If 0ll >min , select the first 0l  links from optL  and indicate “some OD pairs 

may not be covered. If 0lLopt > , go to step 2. Otherwise go to step 8. 
Step 2: OD Covering Rule Checking. 

If llWW
l

−<− 0 : go to Step 3. Else: go to Step 4. 
Step 3: Basic Selection.  

Accept link )(: aaab vmaxvb fB== . 1+= ll , compute 
l

W . Go to Step 5. 

Step 4: Selection Based on OD Covering Rule. 
Step 4_1: Set the label of all links as “non-denied”.  
Step 4_2: Select link )(:

)( aadeniednonalabelb vmaxvb fB==
−=

. Set 1+= ll  

Step 4_3: Compute 
l

W . If 
1−

>
ll

WW : Accept link b  and go to step 5. 
                Else: Deny b . Set deniedblabel =)( , 1−= ll  and go to step 4_2. 

Step 5: Convergence Test. 
 If 0ll = : go to step 7. Else: go to step 6. 

Step 6: Update.  
Modify f  by changing all path flows intercepted by the selected link to zero.  
Go to step 2. 

Step 7: OD Covering Rule Re-checking. 
If 0

0
>−

l
WW , then  

Step 7_1: Delete the selected link covering the least number of new 
OD pairs  
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Step 7_2: Add the unselected link covering the most number of new 
OD pairs 

Step 7_3: Go to step 7;  
If 0

0
=−

l
WW , stop. 

Step 8: Additional Link Selection. 
Choose optL  as part of the solution and select additional links according to 
the maximal flow fraction rule. 
Stop. 

 

Numerical Experiments 

To evaluate the proposed heuristic algorithm, we have designed a set of numerical 
experiments based on the network shown in Figure 3. There are a total of 63 links in 
the network, including 61 two-way links and 2 one-way links. To facilitate the 
computation, each two-way link is changed to two one-way links in the database 
according to the node sequence. 

There are five origin-destination nodes indicated with black circles in Figure 
3, thus the OD matrix is a 55×  matrix. Neglecting trips in the same zone, we have 
randomly generated trips between 200 and 600 for the remaining 20 pairs of OD (see 
Table 4).  

Based on free flow travel time on links, four shortest paths are selected 
between each OD pair. Path flows are computed with the following equation. 

,4,,2,1,5,,2,1,5,,2,1,
4

1

……… ===∀×=

∑
=

ksrq
tt

tt
f rs

i

rs
i

rs
krs

k  

 
Three heuristic algorithms are programmed in Visual Basic 6.0. The first 

algorithm is Yang and Zhou’s heuristic without considering budget constraints. The 
second algorithm is Yang and Zhou’s heuristic, but incorporated with the budget 
constraints. The third algorithm is our proposed heuristic that includes the budget 
constraints and the OD covering rule.  

The optimal set of detector locations without considering budget constraints 
are given in Table 5. A total of 12 locations have been selected, which intercept a 
total net flow of 7900, i.e., the total OD flows in the network. Based on the 
computational results, a minimal number of five links are needed to cover all OD 
pairs in the network. Thus, we have 12=optL  and 5=minl . 

As indicated above, the proposed heuristic algorithm should be able to handle 
three different situations, namely optLl ≥0 , optLll <≤ 0min , and minll <0 . Thus, by 

setting the upper bound for detector locations 0l …,14,15=  respectively, we test the 
new heuristic algorithm and Yang’s heuristic algorithm under budget constraints. 
Five typical cases of the numerical results are shown in Table 6-1 to Table 6-5. 
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In Case 1, the budget constraint 150 =l  is larger than the minimal number of 

links needed to intercept all net flow, 12=optL . Our new algorithm will directly 

include all links in optL , and choose additional links based on the Maximal Flow 
Fraction Rule proposed by Yang and Zhou (1998). According to the theoretical 
analysis by Yang and Zhou, this kind of selection is reasonable from the perspective 
of Maximal Possible Relative Error (MPRE) in the OD estimation. However, since 
the path flow vector f  in Yang’s algorithm will contain solely zero elements after 
the selection of optL , additional links can only be selected randomly, and 
consequently the quality of OD estimation will be degraded. 
 

In the remaining of cases optLl <0 , Yang’s algorithm will choose the first 0l  

links in the set of optL  as its solution. 
In Case 2, the budget constraint is relatively high and the solution obtained by 

Yang’s algorithm also satisfies OD covering rule. The result shows an equivalent 
effect of the proposed algorithm in this case.  

In Case 3, the budget constraint goes down to 8. The solution obtained by 
Yang’s algorithm, as shown in Table 6-3, can only cover 18 OD pairs. The solution 
with our proposed heuristic can still cover all OD pairs, but with slightly lower net 
flow intercepted (i.e., 6765 vs. 6954).  

In Case 4, when the budget constraint further goes down to 5, our proposed 
algorithm will activate its final revision step in the OD Covering Rule Re-checking 
procedures, and yield the coverage of 20 OD pairs, that is five pairs more than those 
would be covered with Yang’s algorithm. 

In Case 5, when the budget constraint 0l  is less than the minimal number of 
links to cover all OD pairs minl , our proposed algorithm will provide the same 
solution as Yang’s algorithm and also give a message to indicate that the budget 
constraint is too low to cover all OD pairs. 

Note that the numerical results in the above five cases seem to support the 
effectiveness of our proposed heuristic algorithm in satisfying the OD covering rule, 
especially under insufficient budget constraints. Also note that since both heuristic 
algorithms, to some extent, belong to the category of greedy algorithm, neither can 
guarantee the global maximum in their net flow intercepted when optLl <0 . 
 

Conclusions and Future Research Issues 

This paper has discussed critical issues associated with optimizing detector locations 
for OD matrix estimation, and proposed an enhanced heuristic algorithm that can 
effectively take into account the budget constraints and the OD coverage. Although 
much remains to be improved in contending with the need in real-world applications, 
the numerical results have revealed a promising property of our proposed algorithm.  

One of the most critical issues remains to be researched is how to define the 
quality of OD matrix estimation. Maximal Net Flow Interception Rule and Maximal 
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Flow Fraction Rule are adopted here to define the estimation quality indirectly. 
However, these rules are far from sufficient, and other factors such as network 
characteristics may also play an important role. We are now trying to directly include 
the uncertainty of OD estimation problem into the selection of detector locations. 
Our future research work will be focused on a series of numerical experiments 
specially designed to test: (1) the robustness of current rules on various types of 
network, and (2) the sensibility of the role played by network characteristics and 
prior OD information.  
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Table 1. True and Target OD Matrices 

 
True OD  Target OD 

 1D  
2D  3D    1D  

2D  3D  

1O  20 30 30  1O  15 20 20 
2O  40 50 40  2O  30 40 30 

 
 
 
 

Table 2. Sum of Squared Errors for OD Estimation by OLS 
 

Links Selected }3{  }1,3{  }2,3{  }4,3{  }5,3{  }6,3{  
Sum of Squared 

Errors 20.83 16.67 16.67 12.50 18.75 18.75 

 

 

 
Table 3. Sum of Squared Errors for OD Estimation with Different Flow Information 

 
Links Selected }2,1{  }3{  }1,3{  }2,3{  }4,3{  }5,3{  }6,3{  

Net Flow Intercepted 210 210 210 210 210 210 210 
Gross Flow 
Intercepted 

210 210 290 340 270 290 280 

Sum of Squared 
Errors 

16.67 20.83 16.67 16.67 12.50 18.75 18.75 

 
 
 
 

Table 4. True OD Matrices 
 

O  D 1 2 3 4 5 ∑  
1 0 330 550 520 330 1730 
2 370 0 240 440 230 1280 
3 320 250 0 520 280 1370 
4 370 270 500 0 370 1510 
5 410 480 570 550 0 2010 
∑  1470 1330 1860 2030 1210 7900 
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Table 5. Optimal Detector Locations without Budget Constraints 

 
Link ID 9 109 14 108 118 102 

Net Flow Intercepted 2010.0 1210.0 807.1 705.5 646.0 570.2 
Link ID 34 101 42 149 2 105 

Net Flow Intercepted 514.4 489.8 352.8 336.0 134.1 124.0 
 
 
 
 

Table 6-1. Optimal Detector Locations under Budget Constraints: Case 1 
 

150 =l  

New Heuristic Yang’s Heuristic 

Link ID Net Flow 
Intercepted 

OD Pairs 
Covered Link ID Net Flow 

Intercepted 
OD Pairs 
Covered 

9 2010.0 4 9 2010.0 4 
109 1210.0 8 109 1210.0 8 
14 807.1 11 14 807.1 11 
108 706.0 13 108 706.0 13 
118 646.0 15 118 646.0 15 
102 570.2 18 102 570.2 18 
34 514.5 18 34 514.5 18 
101 489.8 18 101 489.8 18 
42 352.8 20 42 352.8 20 
149 336.0 20 149 336.0 20 
2 134.1 20 2 134.1 20 

105 124.0 20 105 124.0 20 
40 0 20 

Other links will be 
randomly selected 

 

122 0 20 
22 0 20 
∑   7900 20 
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Table 6-2. Optimal Detector Locations under Budget Constraints: Case 2 
 

110 =l  

New Heuristic Yang’s Heuristic 

Link ID Net Flow 
Intercepted 

OD Pairs 
Covered Link ID Net Flow 

Intercepted 
OD Pairs 
Covered 

9 2010.0 4 9 2010.0 4 
109 1210.0 8 109 1210.0 8 
14 807.1 11 14 807.1 11 
108 706.0 13 108 706.0 13 
118 646.0 15 118 646.0 15 
102 570.2 18 102 570.2 18 
34 514.5 18 34 514.5 18 
101 489.8 18 101 489.8 18 
42 352.8 20 42 352.8 20 
149 336.0 20 149 336.0 20 
2 134.1 20 2 134.1 20 
∑  7776.0 20 ∑  7776.0 20 

 

 
 
 

Table 6-3. Optimal Detector Locations under Budget Constraints: Case 3 
 

80 =l  

New Heuristic Yang’s Heuristic 

Link ID Net Flow 
Intercepted 

OD Pairs 
Covered Link ID Net Flow 

Intercepted 
OD Pairs 
Covered 

9 2010.0 4 9 2010.0 4 
109 1210.0 8 109 1210.0 8 
14 807.1 11 14 807.1 11 
108 706.0 13 108 706.0 13 
118 646.0 15 118 646.0 15 
102 570.2 18 102 570.2 18 
17 494.3 19 34 514.5 18 
149 322.1 20 101 489.8 18 
∑  6765.3 20 ∑  6953.6 18 
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Table 6-4. Optimal Detector Locations under Budget Constraints: Case 4 

 

50 =l  

New Heuristic Yang’s Heuristic 

Link ID Net Flow 
Intercepted 

OD Pairs 
Covered Link ID Net Flow 

Intercepted 
OD Pairs 
Covered 

149 897.5 5 9 2010.0 4 
123 1210.2 9 109 1210.0 8 
52 1010.2 13 14 807.1 11 
136 823.4 16 108 706.0 13 
105 736.4 20 118 646.0 15 
∑  4677.7 20 ∑  5949.3 15 

 

 

 
TABLE 6-5. Optimal Detector Locations under Budget Constraints: Case 5 

 

30 =l  

New Heuristic Yang’s Heuristic 

Link ID Net Flow 
Intercepted 

OD Pairs 
Covered Link ID Net Flow 

Intercepted 
OD Pairs 
Covered 

9 2010.0 4 9 2010.0 4 
109 1210.0 8 109 1210.0 8 
14 807.1 11 14 807.1 11 
∑  4027.1 11 ∑  4027.1 11 

Warning Information 
“cannot cover all OD pairs!” No Indication 
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Figure 1. An Example When Objective Function Is Maximal With One Detector 
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Figure 2. An Example When the Algorithm Violates OD Covering Rule 
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Figure 3. Network Used in Numerical Experiments 
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