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Abstract

This paper develops a decision-support model for transit-based evacuation planning 
occurring in metropolitan areas. The model consists of two modules executed in a sequen-
tial manner: the first deals with determining pick-up locations from candidate locations 
based on the spatial distribution of the evacuees, and the second plans for the route and 
schedule for each transit vehicle based on vehicle availability and evacuee demand pattern. 
An overlapping clustering algorithm is first adopted in allocating the demands to several 
nearby clusters. Then, an optimization model is proposed to allocate available buses from 
the depots to transport the assembled evacuees between the pick-up locations and different 
safety destinations and public shelters. A numerical example based on the city of Baltimore 
demonstrates the applicability of the proposed model and the advantages compared to 
state-of-the-art models with overly strict and unrealistic assumptions.

Introduction
Under potential terrorist attack, harmful substances released from transportation and 
industrial accidents, fires, floods, and other emergencies require immediate evacuation 
from hazardous areas. In congested metropolitan areas, commuters are likely to depend 
on either transit or other modes for their daily commute and, thus, may not have access 
to their private vehicles. Once an incident occurs, responsible agencies, such as city trans-
portation administration and emergency units, should quickly devise a plan to dispatch 
available public transit resources to evacuate carless populations. 

Although aiding the carless during evacuations has been presented in recent research, 
planning details such as how to identify available buses and drivers, how to determine 
potential pick-up locations, how to allocate bus routes to collect evacuees, and how to 
provide a timetable for the drivers (USDOT and USDHS 2006) are not well studied. Lit-
man (2006) and Renne (2008) highlighted the needs for transit-dependent people during 
evacuation planning based on their experience with hurricanes Katrina and Rita. Wolshon 
(2001) mentioned that about 15–30 percent of the evacuation population in New Orleans 
during the hurricanes was transit-dependent. Fittante (2012) demonstrated community 
transit’s value in response to Hurricane Sandy. Transit agencies should be in a position 
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to render valuable assistance during emergencies. During the 9/11 terrorist attack, the 
transit system in New York City allowed free entry and led evacuees to safe locations. 
In Washington DC, buses contributed to the response effort, and additional buses were 
provided to the DC police to move officers to key locations. The Federal Transit Admin-
istration (FTA) and other agencies have issued many security guidelines for response 
before, during, and after a threat to ensure a quick recovery (FTA 2002; USDOT 2006). It 
is suggested that transit agencies to perform their own review on performance indicators 
for assessing emergency preparedness (Nakanishi 2003).

The transit evacuation model developed in this paper concerns the evacuation scenario 
occurring in metropolitan areas—for example, under a no-notice threat during a football 
game. The model consists of two modules executed in a sequential manner: the first deals 
with determining pick-up locations from candidate locations based on the spatial distri-
bution of the evacuees. Once the pick-up locations are set, the evacuees are allocated 
accordingly, and the arrival pattern of each pick-up location is obtained. Fuzzy c-means 
(FCM), developed by Dunn (1974) and improved by Bezdek (1984), is applied to allow 
people at one location to be assigned to multiple clusters. The second module develops 
an integer-linear optimization module and plans the route and schedule for each transit 
vehicle based on vehicle availability and evacuee demand patterns. 

Literature Review
Various studies have focused on different aspects of evacuation planning, such as demand 
modeling (Mei 2002; Wilmot 2004; Fu 2007), departure scheduling (Malone 2001; Mitch-
ell 2006; Sbyati 2006; Chien 2007; Chen 2008), route choice (Cova 2003; Afshar 2008; Chiu 
2008; Yazici 2010; Zheng 2010; Xie 2011; ), contra-flow operation (Theodoulou  2004; 
Wolshon 2005; Tuydes 2006; Xie 2010) and relief operation (Haghani 1996; Barbarosoglu 
2004; Ozbay 2007; Xie 2009). Most of these are specific to the control and management 
of passenger car flows. Compared to these evacuation research efforts, there are only a 
limited number of studies on modeling transit-based evacuation. Elmitiny (2007) simu-
lated different strategies and alternative plans for the deployment of transit during an 
emergency situation. Chen (2009) proposed a bi-level optimization model to determine 
waiting locations and corresponding shelters in a transit-based evacuation; the model was 
applied on the network within the University of Maryland. Song (2009) formulated transit 
evacuation operation during a natural disaster as a location-routing problem aiming to 
minimize total evacuation time; the problem identified the optimal serving area and tran-
sit vehicle routings to move evacuees to safety shelters.  Abdelgawad (2010) developed 
an approach to optimally operate the available capacity of mass transit to evacuate tran-
sit-dependent people during no-notice evacuation of urban areas; an extended vehicle 
routing problem was proposed to determine the optimal scheduling and routing for the 
buses to minimize the total evacuation time. Sayyady (2010) proposed a mixed-integer 
linear program to model the problem of finding optimal transit routes during no-notice 
disasters; a Tabu-search algorithm was designed and an experiment was conducted using 
the transportation network of Fort Worth, Texas. Naghawi (2010) systematically modeled 
and simulated transit-based evacuation strategies applying the TRANSIMS agent-based 
transportation simulation system to the assisted evacuation plans of New Orleans. Kaisar 
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(2012) addressed the optimal allocation of bus stops for the purpose of evacuating spe-
cial needs populations; to evaluate the solution quality, a microscopic traffic simulation 
model was developed to represent the downtown Washington DC  area in an evacuation 
scenario.

In carefully examining the similar study efforts, it can be concluded that most of the 
above models assumed one or several of the following:

•	 	The pick-up locations serving as convening points are given and known in advance.

•	 	All evacuees are present at the pick-up locations shortly after the evacuation starts.

•	 	The loading and unloading times at pick-up locations are negligible or are assumed 
to be a constant value.

•	 	Each vehicle is assigned a fixed route and runs in a cycle.

•	 The destinations have infinite holding capacities for evacuees.

Most of these assumptions are over-restrictive and, thus, prevent the application of the 
model outcome to real-world evacuation scenarios. To overcome these restrictions, our 
model tries to relax these assumptions and has the following unique characteristics that 
distinguish it from the previous studies:

•	 	Both pick-up location allocation and transit bus scheduling are considered. During 
evacuations, the massive number of evacuees first needs to be coordinated and 
guided to nearby convene points, and then the transit vehicles are scheduled 
depending on the time-dependent arrival patterns of the evacuees at these pick-up 
points.

•	 	The demand pattern is treated as time-dependent. Most prior research assumes 
that all evacuees are queued at pick-up locations at the beginning of the evacuation. 
This is almost never true because the evacuees may begin to evacuate at different 
times and it takes time for them to walk to the designated pick-up locations, and 
also because the pick-up locations, such as bus stops, have limited holding capacities, 
thus accumulating crowds and causing a huge bottleneck at that location.

•	 	The loading/unloading times depend on the actual boarding/deboarding times. 
Negligence of this will overestimate the transport efficiency in generating the bus 
route and scheduling the timetables.

•	 	Although pick-up locations are determined beforehand, the bus route is more 
flexible than the daily fixed route, servicing different pick-up locations at different 
runs based on actual need. Sometimes it is inefficient for a bus route to service fixed 
pick-up locations back and forth during evacuations. Instead, once a bus drops off 
evacuees at a safety area, it will be dispatched to the most-needed pick-up location.

•	 Capacity constraint is incorporated into destinations that are commonly public 
shelters, such as stadiums, schools, parks etc. Without such constraint, the model 
is subject to generate solutions in which all evacuees are sent to one or two nearest 
shelters and may cause overcrowding problems.
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Modeling Pick-Up Location Selection
The set of pick-up locations should cover all carless evacuees and limit their total walking 
distance, as per FTA requirements. This study grouped all evacuee generation points into 
several clusters of demand zones, and then allocated a pick-up location within each zone. 
For each demand point, the evacuees were distributed based on the proximity of the 
nearby pick-up location within walking range. An overlapping clustering algorithm to tie 
a particular demand point to several nearby clusters was adopted. Developed by Dunn 
(1974) and improved by Bezdek (1984), Fuzzy c-means (FCM) allows one piece of data to 
be assigned to multiple clusters, which is based on the following objective function:
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where,

xi = the ith measured data

cj = the center of the cluster

uij = the degree of membership of xi in the cluster j

|| * || = the second-norm expressing the similarity between measured data and the 
center

In the context of determining bus pick-up locations, xi is the ith evacuee’s position, cj is 
the jth pick-up location, || * || is the distance between the evacuee and the pick-up loca-
tion, and uij measures the likelihood the evacuee i will move to the pick-up location j. 

The entire algorithm for determining the pick-up locations and the evacuee’s allocation 
plan is composed of the following steps:
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(4) If ∆U = max(∆uij ) ≤ ε, go to step 5; otherwise, go to step 2.

(5) If || xi – cj ||> ξ, set.
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Note if any of the final pick-up locations is geographically feasible (e.g. river, rail-road, and 
building), then it needs to be adjusted to the closest geographically location, which can 
serve the pick-up purpose.

Transit Vehicle Routing and Scheduling
Define Pick-Up Request and Vehicle Route
Each pick-up request is associated with the following parameters: pick-up location, num-
ber of evacuees (usually equal to load capacity), and time-window with an upper and 
lower bound. The bound for the time window can ensure people being picked up on time 

and prevent intolerably long waiting times. For each pick-up location i , we divide the time 

horizon into time segments with lengths  tij , j=1,2,3... ., and let dij be the demand reaching 

pick-up location i during time interval tij , then tij = arg min(dij = C, tij =W), where C is the 

bus capacity and W is the maximum waiting time. For each time segment  tij , j=1,2,3..., 

a pick-up request node is created with a time window 0
( , )ij ik ij ij

k j
a t b a W

< <

= = +∑
. For 

example, given the capacity and the maximum waiting time to be 20 passengers and 2 
minutes, Figure 1 and Table 1 show the pick-up requests I to VI created from the cumula-
tive arrival curves at a particular pick-up location i.

FIGURE 1. 
Pick-up requests generated 

from cumulative arrival curve

Time 
(minute)

Arrivals 
(person)
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TABLE 1. 
Details of Pick-Up Requests

Pick-up Request Time Window Pick-up Number

I 0–120s 20

II 40–160s 20

III 80–200s 20

IV 120s–240s 20

V 240–360s 10

VI 360–480s 10
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Define N 
P
 be the set of pick-up request nodes, N 

O
 be the set of origin nodes for buses,  

N 
D
 be the set of destination nodes for drop off, and N 

E
 be the set of the end depot nodes 

where the bus mission is completed upon arrival. Each pick-up request node i is associ-
ated with a time window [ai,bi]. Herein we consider the hard time window so that i must 
be visited by a bus before bi. Let V be a set of homogenous buses to be used in evacuation. 
The route for each bus is designed in the following manner: pull out of N 

O
; visit several (no 

more than two in this study) pickup-request nodes, satisfying their time windows, and 
go to a destination node to drop off; come back to visit another pick-up request node 
within the time window; go to another destination node to drop off, and so on, until no 
pickup-request can be satisfied within allowed time window; finally, go to the end-depot. 
Each bus is dispatched in such a manner until all pickup-requests are visited exactly once.

Figure 2a shows the typical route for one bus, which consists of multiple runs. Each run 
includes one or two pick-up request nodes and one drop off node. Figure 2b illustrates 
two example bus routes. We tried to assign buses starting from N 

O
 and visiting nodes in 

N 
P 

and N 
D
 alternately and continuously. 

FIGURE 2.  
Illustration of bus routes
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Variable Definition
The decision variables employed in this model are defined below. The indicator variables 
represent the sequence of the bus routes, and the other integer variables represent the 
arrival times, departure times, and the bus loads.

bi, j,k = indicator whether bus k moves from node i to j

bi, j,m,k = indicator whether bus k moves from node i to destination j and then to 
node m

wi,k,i = indicator whether node i is routed by the kth vehicle at lth run

ti,k = the time bus k arrives at request node i

ti,k = the time bus k departs from request node i

ti, j,m,k = the time bus k arrives at destination node j following node i and preceding 
node m

ti, j,m,k = the time bus k departs from destination node j following node i and  pre-
ceding node m

lk,l = the load for bus k at run l

li,k,l = the load to destination i for bus k at run l

The known variables are defined as follows:

N O = the set of origin nodes for buses, e.g. bus depots

N D = the set of destination nodes for evacuees, e.g. shelters

N P = the set of pick-up request nodes for evacuees, e.g. shelters

N E = the set of virtual end depots

TT i, j = the travel time from node i to node j

ni = the number of pedestrians for request i

Lmax = the maximum load of each bus

Ci = the capacity of destination i

ai = the lower bound of the time window  of node i

bi = the upper bound of the time window  of node i

Mathematical Formulation

Objective Function
The objective of the model in equation (2) is to minimize the time for the last evacuees 
to arrive at safe destinations. The definition of the time window for the pick-up request 
guaranteed that the evacuees would not wait more than the maximum waiting time to 
board the bus.

Minimize ,max( ), ,A E
m kt m N k K∀ ∈ ∀ ∈ 	 (2)

A

D

A

D
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The model formulation also includes travel time constraints, time window constraints, pick-up 
requests constraints, bus load constraints, and destination capacity constraints, which are detailed 
in the following sections.

Travel Time Constraints 

, , , , ,(1 ), , ,A D P O P
j k i k i j i j kt t TT M b i N N j N k K− ≤ + − ∀ ∈ ∪ ∈ ∀ ∈ 	 (3)

, , , , ,(1 ), , ,A D P O P
j k i k i j i j kt t TT M b i N N j N k K− ≥ − − ∀ ∈ ∪ ∀ ∈ ∀ ∈ 	 (4)

, , , , , , , ,(1 ), , ,A D P D
i j m k i k i j i j m kt t TT M b i N j N k K− ≤ + − ∀ ∈ ∀ ∈ ∀ ∈ 	 (5)

, , , , , , , ,(1 ), , ,A D P D
i j m k i k i j i j m kt t TT M b i N j N k K− ≥ − − ∀ ∈ ∀ ∈ ∀ ∈ 	 (6)

, , , , , , , ,(1 ), , , ,A D P D P E
m k i j m k j m i j m kt t TT M b i N j N m N N k K− ≤ + − ∀ ∈ ∀ ∈ ∀ ∈ ∪ ∀ ∈ 	 (7)

, , , , , , , ,(1 ), , , ,A D P D P E
m k i j m k j m i j m kt t TT M b i N j N m N N k K− ≥ − − ∀ ∈ ∀ ∈ ∀ ∈ ∪ ∀ ∈ 	 (8)

 
Constraints (3) and (4) set the travel time needed from the pick-up node i to j, constraints (5) and (6) 
set the travel time from the pick-up node i to destination node j, and constraints (7) and (8) set the 
travel time from destination node j to pick-up node m. 

Time Window Constraint 

, , , ,D A p
i k i k it t n t i N k K− ≥ ∆ ∀ ∈ ∀ ∈ 	 (9)

, , , , , , , , , , , , , ,D A
i j m k i j m k k l j k lt t l t Mw i j m N k K l L− ≥ ∆ − ∀ ∈ ∀ ∈ ∀ ∈ 	 (10)

, ,A p
i k it b i N≤ ∀ ∈ 	 (11)

, ,D p
i k it a i N≥ ∀ ∈ 	 (12)

 
Constraint (9) considers the loading time at the pick-up request node i. Constraint (10) calculates 
the unloading time needed at the destination node j based on the bus load. Constraints (11) and (12) 
force the arrival time to be earlier than the upper bound of the time window and the departure time 
to be later than the lower bound of the time window at the pick-up request i.

Each pickup request can be served by only one bus:

, , 1, p
i j k

i k
b j N= ∀ ∈∑∑ 	 (13)

, , 1, p
i j k

j k
b i N= ∀ ∈∑∑ 	 (14)

, , 1, ,O
i j k

j
b i N k K= ∀ ∈ ∀ ∈∑ 	 (15)
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, , , 1, , ,
P

P D
i j m k

m N

b i N j N k K
∈

= ∀ ∈ ∀ ∈ ∀ ∈∑ 	 (16)

, , , 1, , ,
P

P D
i j m k

i N

b m N j N k K
∈

= ∀ ∈ ∀ ∈ ∀ ∈∑ 	 (17)

, , , 0, E
i j m kb j N= ∀ ∈ 	 (18)

, , 1, p
i k l

k l
w i N= ∀ ∈∑∑ 	 (19)

, , , , , , , 0.95i j m k i j k j m kb b b≤ + − 	 (20)

, , , , , , , 1.01i j m k i j k j m kb b b≥ + − 	 (21)

, , , , , ,(1 )i k l j k l i j kw w M b− ≤ − 	 (22)

, , , , , ,( 1)i k l j k l i j kw w M b− ≥ − 	 (23)

 
Constraints (13) and (14) ensure each pick-up request is serviced exactly once.  Constraint (15) 
ensures that the bus from the depot can head to only one pick-up location. Constraints (16) and (17) 
ensure only one preceding and following node for the destination node at each bus run. Constraint 
(18) dismisses the bus mission once it reaches the end depot. Constraint (19) ensures that each 
pick-up request be serviced exactly once. Constraints (20) and (21) ensure that the value of bi,j,m,k  
can be 1 only if bi,j,k and bj,m,k are both 1. Constraints (22) and (23) establish the relationship between 
the indicator variables b and w, which means that if pick-up request j is serviced by one bus followed 
by pick-up request i, then the indicator variable w value should be identical for pick-up requests i 
and j for the same bus run.  

Bus Capacity Constraints

, , , , ,k l i i k l
i

l n w k K l L= ∀ ∈ ∀ ∈∑ 	 (24)

, max , ,k ll L k K l L≤ ∀ ∈ ∀ ∈ 	 (25)

 
Constraint (24) calculates the total load for the bus k at the lth run, and constraint (25) limits the load 
to be less than the maximum load for each bus.

Destination Capacity Constraints

, , , , ,(1 ), , ,D
i k l k l i k ll l M w i N k K l L≥ − − ∀ ∈ ∀ ∈ ∀ ∈ 	 (26)

, , , , ,(1 ), , ,D
i k l k l i k ll l M w i N k K l L≤ + − ∀ ∈ ∀ ∈ ∀ ∈ 	 (27)

, , , , , , ,D
i k l i k ll Mw i N k K l L≤ ∀ ∈ ∀ ∈ ∀ ∈ 	 (28)

, , , , , , ,D
i k l i k ll Mw i N k K l L≥ − ∀ ∈ ∀ ∈ ∀ ∈ 	 (29)

, , , D
i k l i

k l
l C i N≤ ∀ ∈∑∑ 	 (30)
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Constraints (26)–(29) calculate the number of evacuees unloaded at the destination i at 
the 1st run for bus k.  Constraint (30) limits the total unloaded evacuees at each destina-
tion node to be less than its holding capacity. 

Further Simplification
Note that, during evacuations, the evacuee volumes are high, especially at beginning. The 
number of evacuees at a single pick-up request is very likely to be close to or reach bus 
capacity. In addition, some pick-up requests may have restrictive time windows, such 
that the bus serving one of these types of request nodes will not have enough remaining 
capacity or time to service any other pick-up request at that run. Thus, we can divide 

the pick-up request nodes into two groups: 1
pN  and 2 1\p p pN N N= . Any node i in the 

group 1
pN and any node j in pN satisfies at least one of the following criteria:

(1) maxi jn n L+ > 	  

(2) [ , ] [ , ]i i ij i i ij j ja n t TT b n t TT a b+ ∆ + + ∆ + ∩ = ∅   and 

        [ , ] [ , ]j j ji j j ji i ia n t TT b n t TT a b+ ∆ + + ∆ + ∩ = ∅

The pick-up request in 1
pN either has a close-to-capacity number of pick-ups or an 

inflexible time window, which cannot accommodate other requests and thus should be 
serviced exclusively by one run. Constraint (31) excludes the possibility of servicing any 

two pick-up requests within 1
pN , which simplifies the formulation and, in turn, improves 

the computation speed.

 , , 10, , ,P
i j kb i j N k K= ∀ ∈ ∀ ∈ 	 (31)

Numerical Example
The model was tested on the city of Baltimore’s downtown road network. A hypothet-
ical evacuation after a sudden incident such as a terrorist attack was assumed. Figure 3 
shows the spatial distribution of the demand points, bus depots, and safety destinations 
based on the aggregated 2010 MPO data from Baltimore County. There were around 40 
pedestrian demand points, 2 transit depots, and 10 safety shelters in the vicinity area of 
the downtown area. The sizes of the demand points indicate the levels of the evacuee 
numbers at the locations and were estimated based on the traffic analysis data provided 
by Baltimore County. The two bus depots were the Bush Bus Division in the southwest 
and the Kirk Bus Division in the northeast and included high schools, community col-
leges, recreation centers, etc. For illustrative purposes, a constant evacuation rate every 10 
minutes for the first 30 minutes was assumed at any given demand location. CPLEX 12.4 
was adopted to solve the mixed-integer programming problem on a Windows7 computer 
with an Intel i-7 3770 CPU and 8GB of memory.



A Transit-Based Evacuation Model for Metropolitan Areas

	 Journal of Public Transportation, Vol. 17, No. 3, 2014	 139

Table 2 lists the rate ranges in terms of pedestrian level, the capacities of the shelters, and 
the availability of buses in the depots. Figure 4 depicts the 11 candidate pick-up locations 
after the fuzzy clustering on the evacuee demand points. The average walking time for the 
evacuees to the pick-up locations was 3.1 minutes; the farthest was 9.8 minutes.  Table 3 
shows the cumulative arrival curve for the 11 pick-up locations based on the pedestrian 
levels and the degrees of membership of their nearby demand locations. Figure 5 shows 
two among the generated bus routes, and Table 4 lists the corresponding time and 
pick-up schedules. 

FIGURE 3. 
Demand points, depots, and 

safety locations
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Shelter ID Capacity (person) Depot ID Bus Availability

a 1,500 I 50

b 1,000 II 50

c 1,500

d 2,000

e 1,000

f 1,000

g 1,000 Pedestrian level Rate for first 10 min (person/min)

h 1,000 High 30

i 1,000 Medium 20

j 1,000 Low 10

TABLE 2. 
Shelter Capacities,  
Bus Availabilities,  

and Demand Levels

FIGURE 4. 
Pick-up locations after  

fuzzy clustering
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Pick-up Location 0–10 (min) 10–20 (min) 20–30 (min) 30–40 (min)

1 269 211 105 23

2 353 271 136 30

3 353 272 135 31

4 362 265 130 23

5 265 200 106 20

6 363 268 133 26

7 450 355 180 34

8 628 478 256 45

9 639 415 208 35

10 365 261 135 20

11 451 352 176 34

TABLE 3. 
Time-Dependent Arrivals to 

Pick-Up Locations

FIGURE 5. 
Two examples of  

generated bus routes.
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Bus Run Depot Pick-up 
Node Destination Bus load 

(persons)
Travel Time 

(min)

1

1

II

10 g 50 12 

2 8 i 50 14 

3 2, 1 b 40 18 

2

1

I

3 d 50 10 

2 5 d 50 5 

3 9 e 50 7 

4 7 j 50 14 

5 1 b 30 12
 

As indicated previously, the improvements of this model compared to the previous stud-
ies are as follows:

•	 The time window of the pick-up request was used to restrict the maximum waiting 
time for evacuees.

•	 Pick-up nodes and targeted destinations do not have to be fixed in different runs.

•	 A time-dependent arrival curve at the pick-up locations is considered rather than 
assuming all evacuees are present at the location at the start.

To show the advantage of adopting the above improvements, we designed the following 
experiments:

•	 Use maximum waiting times of 2, 5, and 10 minutes.

•	 Fix the route in each bus run.

•	 Assume a full-demand start at pick-up locations.

Table 5 shows the minimum number of buses needed for the combination of the exper-
iment settings. It can be seen that the longer the waiting time toleration, the fewer the 
number of buses are needed to service all evacuees. The strategy of fixing the route 
requires more vehicle resources than that of the flexible route. Assuming a full demand 
start, the number of buses needed is much higher, and most of the buses are scheduled 
simultaneously at the start of the evacuation, which may create a great burden on vehicle 
road traffic. The fixed and flexible route strategies under the full demand scenario do not 
make much difference, simply because most of the vehicles will be scheduled only for one 
run to meet the time window constraints.

TABLE 4. 
Time and Load Schedules  

for Bus Routes

TABLE 5. 
Minimum Buses Required  
for Different Combination  

of Settings

Max Waiting
Arrival Curve Full Demand

Fixed Route Flex Route Fixed Route

2 min 87 73 87

5 min 73 53 73

10 min 46 31 46
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Table 6 shows the distribution of evacuees to safety areas with and without destination 
capacity constraints. It can be seen clearly in the latter case that a few shelters closest to 
the pick-up locations become overcrowded and exceed their actual capacity. With the 
capacity constraints in the model, the evacuees are distributed more evenly among the 
destinations.

TABLE 6. 
Minimum Buses Required  
for Different Combination  

of Settings

Destination ID
Capacity Constraints

With Without

a 1,388 1,388

b 790 790

c 1,414 0

d 2,000 3,414

e 1,000 1,297

f 297 0

g 388 0

h 800 0

i 1,000 2,188

j 790 790

Conclusions
This paper proposed an optimization approach to determine pick-up locations for evacu-
ees and allocate trips for buses for rescue purposes in transit-based evacuation planning. 
The proposed model was formulated as an integer linear program. In the model, evacuee 
demand points were clustered, and the center was defined as the pick-up location. Evac-
uees at each demand point were guided to nearby pick-up locations according to their 
proximity. The buses started from the bus depot to pick up evacuees and dropped them 
off at the safety area; after unloading, they headed towards other pick-up locations until 
all evacuees were picked up. An example using the Baltimore downtown area showed that 
the proposed model was more realistic and yielded better results compared to previous 
models under some given assumptions.

This research should be useful to planners, transit agencies, and emergency management 
officials, as effective and reliable transit evacuation planning is imperative and critical 
based on experiences from the past. For emergency management agencies, how to effi-
ciently use available public transit resources without keeping citizens waiting too long is 
critical. The paper offers an analytical approach to provide answers to some of the issues 
for transit-based evacuation, such as the following: How many transit vehicles are needed 
and should be reserved in case of an emergency situation? How can a flexible rather than 
a fixed route for drivers be scheduled to increase evacuation efficiency? How can reason-
able dispatch schedules for transit vehicles be generated to prevent unnecessary road 
congestion by sending all vehicles at once? How can pick-up points for emergency pur-
poses be reasonably selected?  In addition, since this model adopts a generalized approach 
and is based on a few location-specific assumptions, it can be applied to other cities as 
long as the input demand, road network, and transit data are present.
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Although much has been done in this paper regarding transit evacuation modeling, 
the study is still exploratory and can be further improved. The limitations of this model 
include the following:

•	 The separation of the two modules (pick-up location selection and transit route 
optimization) may render non-optimality of the entire system. However, the current 
difficulty of combining these two lies in over-complexity of the model. 

•	 Without distinguishing the categories and groups of evacuees, it is hard to preclude 
the possibility that people without special needs may occupy spaces reserved for 
special-needs groups, such as persons with disabilities and children.

•	 Although the computation speed is acceptable on a citywide transit network for 
evacuation within a reasonable time window, the NP-hardness of the integer-linear 
formulation may have an impact on the computation efficiency in the application 
of statewide networks and time windows in days and weeks.

•	 The model inputs currently rely on planning MPO data. However, there are numerous 
daily visitors in study areas that may not be captured by the data. Moreover, the 
actual number of evacuees at the time of evacuation is somewhat unpredictable.  
All these factors may impact the optimal solutions.

•	 Current travel estimation is not based on real-time traffic information during 
evacuation. Few previous studies have tried to combine passenger car and transit 
evacuation modeling under a unified framework. Thus, the capability of estimating 
travel time during evacuations will affect the solution quality of this model.

To address these modeling limitations, future studies could focus on directions such as 
integrating the two decision modules, paying attention to special group needs, designing 
an efficient algorithm to expedite the computation process, performing sensitivity analy-
ses, and receiving real-time input data feeds and integrating them with the passenger car 
evacuation model.
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