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Abstract. Choosing proper locations of urban transit hubs has always been one of the critical 
concerns facing urban transportation planning agencies in China. This study proposes a mixed 
integer optimal location model for urban transit hubs, with the objective to minimize the 
demand-weighted total travel time, when explicitly taking into account Traffic Analysis Zones 
(TAZs) as demand origins or destinations in a target urban area. An Integer Non-linear 
Programming (INLP) reformulation was developed to significantly reduce the number of 
variables. Bilinear constraints in the proposed INLP formulation were then re-modeled into linear 
functions to ensure global optimal solutions obtained. The model was successfully applied to 
optimize the hub locations in Suzhou Industrial Park, China, with the result of significantly 
improved system performance. The impacts of several critical factors, such as the number of 
hubs and the travel time discount coefficient on the system performance are also investigated. 
 

1. INTRODUCTION 

In a hub network, centrally located service facilities serve as the hubs. Traffic flows from various 
origins to destinations are consolidated to hubs, and after regrouping, leave the hub facilities 
bound either to other hubs or to their ultimate destinations (1). Compared with a completely-
interconnected network, the characteristic of such a hub network is the bundling of flows on the 
inter-hub links, resulting in more efficient utilization of the corresponding transportation 
resources. Transit hub location planning is a branch of the hub location problems. Since O’Kelly 
(2) first formulated a quadratic single assignment model for interacting hub facilities from an 
operations research point of view, this work has attracted the attention of researchers from such a 
variety of fields as telecommunications, airline passenger management and logistics etc..   

In review of the literature, studies of hub location problems are concentrated mainly on 
two basic models depending on how non-hub nodes are connected to the hubs (3). In the single 
assignment model each node is connected to a single hub (2), and there is no sorting at the origin 
because all flow must travel to the same hub. However, the multiple-assignment model allows 
each node to be connected to more than one hub, and sorting must occur at each origin that 
interacts with more than one hub (4). With the objective of minimizing the total travel cost, these 
two basic models require all services between the non-hub nodes to be hub connected, which is 
known to be strict hubbing policy. To deal with more realistic characteristics of hub networks, 
researchers discussed different extensions including a fixed cost added into the objective function 
so that the tradeoffs between travel costs and fixed costs are considered (5), a capacity constraint 
incorporated in the model by limiting the flows entering a hub under its capacity (6), and the non-
restrictive hubbing policy which allows every pair of nodes to interact directly with each other 
(1). Sung et al. (7) proposed a cluster-based hub location model with non-restrictive policy. In 
their model, exactly one hub location is assigned to a cluster to be opened, and traffic flows 
between nodes can either be routed directly or via hubs. Besides, a very recent study by Kim et 
al. (8) developed a hub network design model considering economies of scale stemming from the 
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consolidation of traffic flows. The model is designed to determine the cost-decreasing effect due 
to the consolidation of flows endogenously and to include several cost components and capacity 
constraints relative to the uniqueness of hub networks. 

Due to the nondeterministic polynomial time complete (NP-complete) property of the hub 
location problems, many researchers have devoted great attention to the development of efficient 
algorithms. O’Kelly (2) was the first to develop two heuristics that were able to determine 
optimal locations given a possibly suboptimal allocation pattern for the single assignment model. 
Moreover, lots of heuristics such as simulated annealing (9), genetic algorithms (10), tabu search 
(11), and neural networks (12) have been used for near optimal solutions. Campbell (4) initially 
accomplished the linearization of the quadratic hub location model, which makes global optimal 
solutions possible. In order to avoid fractional solutions of Campbell’s model, some researchers 
(13-15) further modified this linear model by eliminating redundant and impractical routes and 
by exploiting the symmetry of the available test data. These modifications reduced computation 
time and the number of variables without sacrificing integrality. Recently, Sung et al. (7) 
proposed a dual-based approach for a hub network design problem under non-restrictive policy, 
which consists of a dual ascent procedure and a dual adjustment procedure. Numerical 
experiments from multiple data sets have proved the efficiency of their algorithm in obtaining 
good solutions. 

In the developing China, traffic congestion has emerged as a critical during the process of 
urbanization. More and more researchers have realized that development of transit-oriented 
urban transport systems is one of the most effective strategies to relieve the traffic congestion in 
China. In recent years, many big cities in China are dedicated to proposing policies and measures 
for developing efficient public transport systems from both planning and operation perspectives. 
Transit hubs are the fundamental facilities in the urban transit system, which are designed to 
provide switching points for inter-modal flows and to feature seamless pedestrian connections. 
Properly located transit hubs will significantly improve the operational efficiency of limited 
transportation resources and the quality of transit services. Therefore, transit hub locating 
problem usually serves as the basis and the first step during the urban transit planning process. 
However, despite the increasing needs for development of transit-oriented urban transport 
systems in China, the critical issue of determining optimal transit hub locations has not been 
adequately addressed yet in the literature. Thus, along the line of previous location researches, 
this study will focus on the following critical issues: 

• Formulate a cluster-based urban transit hub location model, based on the 
formulation by Sung et al. (7), with the objective to minimize the demand-weighted 
total travel time, when explicitly taking into account Traffic Analysis Zones (TAZs) as 
demand origins or destinations; 

• Design an efficient solution approach to the proposed model to make it tractable for 
large-scale real-world applications; and 

• Test the applicability of the proposed model through an illustrative case to assist 
planners in best understanding and applying the proposed model during the planning 
process; 

This paper is organized as follows. Next section will list the assumptions for formulating 
the hub location optimization model. With these preparation efforts, Section 3 presents the 
detailed formulation of the transit hub location model, including the objective function as well as 
operational constraints. A new Integer Non-linear Programming (INLP) formulation of the 
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proposed model and its bilinear constraint processing are presented in Section 4 to make it 
tractable for general Mixed Integer Programming (MIP) solvers. Section 5 shows results of a case 
study in Suzhou Industrial Park, China that demonstrate the applicability of the proposed model. 
Concluding comments along with future extensions are reported in the last section.   
 

2. MODEL ASSUMPTION 

In this paper, we study the discrete location problem for urban transit hubs of a given study area, 
which can be divided into different TAZs. The demand origins and destinations, as well as the 
hubs are assumed to occur only at the centroids of those TAZs, denoted as nodes. To ensure that 
the proposed formulations for optimization of hub locations can be tackled and also realistically 
reflect the real-world constraints, this study has employed the following five assumptions in the 
model formulation. 
 
Assumptions 1: Single hub allocation policy 

More specifically, all nodes are partitioned into clusters in advance based on the 
geographic relations between neighboring TAZs, land use restrictions or other political and 
administrative reasons, as shown in Figure 1 (This situation often exists in the real world, since 
control and management on local networks are heavily influenced by the associated local 
communities). For any cluster, only one node has to be selected as a hub and all other nodes are 
assigned to this hub. Moreover, all the hubs are assumed to be fully inter-connected. 
 
Assumptions 2: Non-restrictive policy, which means flows between origins and destinations 
may be sent either directly or through hub(s), and the number of hub-stops is no more than 
two. 

Under the non-restrictive policy, if a node is assigned to a hub, any flows to or from this 
node have to go via the hub, or do not involve hubs at all (non-stop service). Therefore, the paths 
from an origin node i  to a destination nodej  could have three possible choices, as shown in 
Figure 2: (1) nonstop: transit flows are transported directly from i  to j ; (2) one-hub stop: transit 
flows are transported from i  to j with the hub k as the transfer point; (3) two-hub stop: transit 
flows are transported from node i  to j  via both hub k  and m  along the route jmki →→→ . 
 
Assumption 3: The transit network is composed of two types of links (see Figure 1): arterial 
links (connection from hubs to hubs) and branch links (connection from hubs to nodes or 
from nodes to nodes directly), and There exists a traffic time discount coefficient for the 
arterial link. 
 
Assumption 4: The number of hubs and clustering rules are pre-determined. 
 
Assumption 5: The transfer time (including walking time and waiting time) at hubs is 
assumed to be constant. 
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3. MODEL FORMULATION 

Previous studies by Sung et al. (7) proposed a hub network design problem, which is called 
cluster-based hub location problem. Along the line of their research, this study applies the 
cluster-based concept in designing the urban transit network.  
 
Notations 

To facilitate the following illustration, all definitions and notations used hereafter are 
summarized below.  

 
Parameters and Sets: 
G  : Target transit network; 
N  : Set of TAZs (origin or destination nodes); 
i   : Index of each TAZ (node); 

),( ji  : Link (route) between node i  and j ; 
p  : The number of clusters (hubs) in the target network; 

rC  : Cluster r  in the target network ( pr ,,1Λ= ); 

iC  : The cluster to which TAZ i  is assigned to ( Ni ,,1Λ= ); 

ijw  : Flows from node i to j  (unit: trips); 
α  : The travel time discount coefficient between hubs; 

ijt  : Non-stop average travel time from node i to j  (unit: min); 

kt  : Transfer time at hubk  (unit: min); 

ijkmt  : Hub-stop average travel time from nodei to j via hubsk andm  (unit: min), 

mjmkmkikijkm tttttt ++++= α  ( 0=kmt , if km = ); 

 
Model Variables: 
Three sets of binary decision variablesijx , ijkmx  and ky are defined: 





=
otherwise0

stop-non with ed transportare and  nodesbetween  flows  if1 j i
xij  
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otherwise0
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Formulation 
The location model for transit hubs is be formulated as follows: 

∑∑ ∑ ∑
= = ∈ ∈











+

n

i
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j
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Ck Cm
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i j1 1

min                             (1) 
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1=∑
∈ rCk

ky     pr ,,1Λ=                                  (2) 

∑ ∑
∈ ∈

=+
i jCk Cm

ijkmij xx 1  ji,∀                                 (3) 

k
Cm

ijkm yx
j

≤∑
∈

   kCikj ∈∀ ;,                                 (4) 

m
Cm

ijkm yx
i

≤∑
∈

   mCjmi ∈∀ ;,                                (5) 

{ }1,0,, ∈kijkmij yxx    mkji ,,,∀                               (6) 

 
The objective function (1) aims to minimize the demand-weighted total travel time in the 

system. Constraint (2) limits that only one of the nodes in each cluster should be selected as a 
hub. Constraint (3) means that flows between node i  and j  are transported either via the non-
stop service or the hub-stop service. Constraints (4) and (5) prevent any hub services unless the 
node is selected as a hub. Constraint (6) is a standard integrality constraint. 
 

4. SOLUTION APPROACH 

In this section, this study presents a new INLP formulation to significantly reduce the number of 
variables in the original model by introducing a set of new variables and bilinear constraints. 
Also, the bilinear constraints in the proposed INLP formulation were re-modeled by linear 
functions to ensure global optimal solutions obtained. 
 
The New INLP Formulation 
Note that, the original model formulation (Eq. (1) – (6)) could result in a huge number of 
variables when the number of nodes is large, due to the high dimensionality ofijkmx . For example, 

for a regularly normal instance with 50 nodes and 8 clusters, the number of binary variables and 
constraints is more than 100 million, which will make the solving process inefficient and time 
consuming. However, if we observe the model formulation in an alternative way, we can find 
that all routes between two clusters or within a cluster can be easily determined if the hub is 
determined for those clusters. As shown in Figure 3, if node k and m (k < m and mk CC ≠ ) are 

selected as hubs, demand-weighted total travel time to transport flows from i to j is: 

)}(,min{)}(,min{ kikmkmjmjijijimjmkmkikijijijij tttttwtwtttttwtwT +++++++++= αα   (7) 

Then, the total demand-weighted total travel time between clusters kC  and mC  will be: 

∑ ∑
∈ ≠<∩∈

=
k mkmCi CCmkCj

ij
km TT

,

                                   (8) 

 
For the special case with k = m, kmT  becomes kT : 

∑∑
∈ ∈

=
k kCi Cj

ij
k TT                                         (9) 
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Variables kmδ (k < m and mk CC ≠ ) are introduced to replace the variables ijx and ijkmx . 

They take a value of 1 if and only if hubs are set in both nodes k and m. Then, the original model 
can be transformed into the following INLP: 

 

∑∑
=≠∩<

+
n

k
k

k

CCmk
km

km yTT
mk 1

min δ                                (10) 

s.t. 

1=∑
∈ rCk

ky           pr ,,1Λ=                           (11) 

mkkm yy ⋅=δ         mk CCmk ≠< ,                         (12) 

{ }1,0, ∈mk yy         mk <                              (13) 

 
The objective function Eq. (10) did the same job as the original one Eq. (1) with 

consideration of all the demand-weighted travel time between different clusters and within any 
cluster. Constraints Eq. (11) are the same as constraints Eq. (2). Constraints Eq. (12) ensure that 

kmδ  is 1 if and only if ky  and my  are both equal to 1. After the transformation, the number of 

decision variables can be significantly reduced. For the same instance with 50 nodes and 8 
clusters, only thousands of variables are involved. However, the original problem was 
transformed into a INLP with bilinear constraints, as shown in Eq. (12). Therefore, it is hard to 
get the global optimal solutions because they combine all the difficulties of both of their 
subclasses: the combinatorial nature of MIP and the difficulty in solving non-convex (and even 
convex) nonlinear programs (NLP).  

 
Bilinear Constraint Re-modeling 
To address the difficulty in obtaining global optimal solutions for the above INLP formulation, 
this section re-modeled its bilinear constraints Eq. (12) into the following linear form functions:  

0≥kmδ                                            (14) 

mkm y≤δ                                           (15) 

1−+≥ mkkm yyδ                                       (16) 

kkm y≤δ                                           (17) 

Note that, Eq. (14) – (17) can always assure Eq. (12) hold. The INLP is transformed to the 
following MIP: 

∑∑
=≠∩<

+
n

k
k

k

CCmk
km

km yTT
mk 1

min δ                                (18) 

s.t. 

1=∑
∈ rCk

ky           pr ,,1Λ=                           (19) 

mkm y≤δ           mk CCmk ≠< ,                         (20) 

1−+≥ mkkm yyδ       mk CCmk ≠< ,                         (21) 

kkm y≤δ           mk CCmk ≠< ,                         (22) 
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{ }1,0, ∈mk yy         mk <                              (23) 

The new MIP has significant few variables and constraints that could be solved with the 
existing MIP solvers.  
 

5. CASE STUDY 

This section presents the application of the proposed location model and solution approach for 
Suzhou Industrial Park, China. This case study intends to assist transit system planners in best 
understanding and applying the proposed model. The presentation hereafter will include the 
following parts:  

• Detailed description of the study network, including TAZ information, clustering rules, 
demand distribution, and average travel time between zones; 

• Model inputs, optimization results, and performance analyses; 
• Assessment of the impact of the travel time discount coefficient and hub numbers on the 

optimization results for the given network;  
 
Study Network 
The proposed model and solution approach was applied to determine the optimal location of 
transit hubs in Suzhou Industrial Park, China. The network is divided into 58 TAZs, as shown in 
Figure 4.  

Considering political as well as administrative factors, the entire Industrial Park consists 
of one downtown area, four suburban areas, and one college park. Moreover, from a geographic 
point of view, the downtown area is further divided by the Jinji Lake and the Xinhua Expressway 
into three parts, denoted as clusters 1, 3, and 4 in Figure 5. The four suburban areas are 
represented by clusters 2, 6, 7, and 8, and the college park falls into the cluster 5. Each of the 
clusters will contain exactly one hub. The clustering rules of the study network and the 
distribution of TAZs among clusters are shown in Table 1 and Figure 5. 
 
Model Inputs, Outputs and Analysis 
In order to implement the proposed model for optimal transit hub locations in the study network, 
the following information should be available as inputs: 

• The O-D matrix of the study  network; 
• The average travel time matrix between any pair of TAZs; 
• The travel time discount coefficient for arterial links, denoted by α , here we use 

5.0=α ; 
• The number of hubs and clustering rules discussed in the above section; 
• Constant transfer time at hubs, here we use 3 mins; 

Based on the input information, responsible agencies can then use our proposed model to 
obtain the optimal hubbing policy, which includes the following three types of information: 

• System MOE, i.e. the total demand-weighted travel time of the study network; 
• The list of opened hubs as well as  their locations and scales (flows in-and-out)); and 
• The route assignment of transit flows between TAZs; 

The proposed model was implemented in the LINGO MIP Solver, and the optimal 
locations (TAZ IDs) of opened hubs are shown in Figure 6. The total demand-weighted travel 
time under the optimal hubbing policy is 74,050 hrs, and it has been reduced about 13% 
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compared with the system performance of 84,731 hrs without the hubbing policy. Furthermore, 
based on the optimal locations of hubs, the route assignment of each transit OD pair can be easily 
determined from the model, which serves as the basis for generating the scales of the opened 
hubs, as shown in Table 2. This information will assist planners to determine the resources 
allocated to each hub to ensure it operate under its flow capacity. 

As indicated in Table 2, hubs located at clusters 7, 17, and 21 in the downtown area 
accommodate much larger transit flows than other hubs in the study network. Therefore, more 
resources should be allocated to design these hubs at a higher level. 

 
Impact of the Number of Clusters and α Values 
Based on the geographic and political interrelations between neighboring TAZs, this case study 
has partitioned the study network into 8 clusters, which require 8 hubs opened. However, during 
the real-world planning process, budget constraints are always among the most critical factors 
affecting the planning results. The cost for opening and operating 8 hubs may already exceed 
budget limit in this case. Thus, planners need to find a new clustering rule with less opened hubs 
and its corresponding optimal hubbing policy to best fit into the budget requirements. However, 
with the decrease of the number of opened hubs, the economies of scale from consolidation of 
transit flows will be reduced, so a trade-off exists between the above two aspects. Also revealed 
as a critical factor, the travel time discount coefficientα can significantly affect the willingness of 
people to make transfers at hubs, and further influence the performance of the hubbing policy. 

Considering the potential sensitivity of the system performance to the above two critical 
factors, this section tested the system performance under different scenarios with various 
combinations of hub numbers and α values. Table 3 shows the clustering rules of the transit 
network under different number of hub numbers. Table 4 shows the objective function values 
under hub numbers p from 2 to 8, and α values from 0.5 to 0.9. The varying of objective 
function values with different p andα values and a comparison with no hubbing policy are 
shown in Figure 7.  

As indicated in Table 4 and Figure 7, one can reach the following findings: 
• For a given value ofα , the objective function will decrease when the number of opened 

hubs increases. Notably, there exists a threshold of p , below which setting hubs has no 
advantage. For example, given 5.0=α , when 4≤p , the objective function values of 
setting hubs are even higher than setting no hubs. Only after 5≥p , the hubbing policy 
begins to outperform. This information will help planners find the best number of hubs 
and clustering rules to both satisfy the budget constraints and maximize the economies 
of scale from consolidation of transit flows; 

• For a given value of p , the objective function will increase when the value of α  
increases. Also, there exists a threshold of α , above which setting hubs has no 
advantage. For example, given 6=p , when 8.0≥α , the objective function values of 
setting hubs are even higher than setting no hubs. Only after 8.0<α , the hubbing 
policy begins to outperform. This information will provide guidelines to planners in 
designing speeds for transit routes. 
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6. CONCLUSIONS 

This study has presented a cluster-based transit hub location optimization model that explicitly 
takes into account TAZs as demand origins or destinations in the network. With the objective of 
minimizing the network total demand-weighted travel time, the proposed model generates not 
only the optimal locations of opened hubs in the target network, but also determines the scales of 
those hubs to assist planners for proper design and resource allocations.  

To solve the proposed model in cost-effective way, a new INLP reformulation was 
designed to efficiently reduce the number of variables in the original model formulation, and the 
bilinear constraints in the INLP were then re-modeled by linear functions to make the problem 
easily handled by existing MIP solvers.  

The model was successfully applied to designing the hub network for Suzhou Industrial 
Park, China, with the result of significantly improved system performance. Furthermore, the 
impacts of various hub numbers and travel time discount coefficients on the system performance 
were evaluated. The results from the impact analyses can provide critical information for 
planners to choose the best number of hubs and clustering rules, as well as to properly design the 
transit routes.  

To deal with more realistic situations, further research along this line will be focused on 
the following critical issues: 

• The costs for building and operating hubs can be integrated into the objective function 
so that the budget constraint is considered; 

• The limitation of hub capacities can also be incorporated in the model by adding a 
capacity constraint; 

• A hierarchical hub location model can be formulated with detailed consideration of 
different hub types and their corresponding interactions; and 

• Actual traffic conditions and their impacts on the route choices of transit flows in the 
network should be taken into account in the model. 
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TABLE 1 Clustering rules of the study network 

 
Cluster ID TAZ ID 

1 {1-9, 12} 
2 {37-39} 
3 {10,11,13-19} 
4 {20-28} 
5 {40-46} 
6 {32-36} 
7 {47-50} 
8 {51-58, 29-31} 
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TABLE 2 Hub scales generated from the model 

 
Hub Location 

(TAZ ID) 
Hub Scale 
(in trips/hr) 

Hub Location 
(TAZ ID) 

Hub Scale 
(in trips/hr) 

7 9862 37 4916 
17 14850 42 5939 
21 8979 47 4087 
33 5303 58 5667 
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TABLE 3 Clustering rules under different numbers of hubs  

 
Number  

of Hubs (p ) Clustering Rules (TAZ IDs) 

2 {1-28, 37-46}, {29-36, 47-58} 
3 {1-9,12,37-39}, {10-11, 13-28, 40-46}, {29-36, 47-58} 
4 {1-9,12,37-39}, {10-11, 13-28, 40-46}, {32-36}, {29-31, 47-58} 
5 {1-9,12,37-39}, {10-11, 13-28}, {40-46}, {32-36}, {29-31, 47-58} 
6 {1-9,12,37-39}, {10-11, 13-28}, {40-46}, {32-36}, {47-50}, {29-31, 51-58} 
7 {1-9,12}, {37-39}, {10-11, 13-28}, {40-46}, {32-36}, {47-50}, {29-31, 51-58} 
8 {1-9,12}, {37-39}, {10-11, 13-19}, {20-28},{40-46}, {32-36}, {47-50}, {29-31, 51-58} 
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TABLE 4 Objective function values under different scenarios (in hrs) 

 
α  

p  0.5 0.6 0.7 0.8 0.9 

2 114298  114628  114905  115176  115289  
3 95922  97045  97768  98256  98475  
4 90735  92194  93281  94052  94533  
5 81370  83436  84914  86023  86764  
6 79857  82099  83742  84944  85730  
7 78456  80827  82657  84029  84931  
8 74050  76967  79150  80823  81958  
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FIGURE 1 Illustration of the cluster partition and single hub allocation 
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FIGURE 2 Paths for transit flows between origins and destinations 
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FIGURE 3 The minimum demand-weighted total travel time between clusters 
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FIGURE 4 Distribution of TAZs on the study network  
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FIGURE 5 Clustering rules for the study network  
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FIGURE 6 Optimal locations of the transit hubs from the model 
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FIGURE 7 Objective function values under different scenarios 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


