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This study presents a robust model for estimating the dynamic freeway
origin–destination matrix with a measurable time series of ramp and
mainline flows. The proposed model captures the speed variance among
vehicles having the same departure time, origin, and destination with an
embedded travel time distribution function that results in a substantial
reduction in model parameters. With the developed solution algorithm,
the proposed model offers the potential use in a network of realistic size
such as the I-95 freeway corridor between the Maryland I-695 and I-495
beltways. Extensive numerical analyses with respect to the sensitivity of
both input measurement errors and the selection of initial parameters have
revealed that the proposed model is sufficiently robust for real-world
applications.

Dynamic origin–destination (O-D) matrices are essential input
information for a variety of traffic control applications, such as
real-time route guidance and dynamic traffic assignment. Because
the actual number of variables to be estimated for either a static or
a dynamic system is always far greater than the available infor-
mation, transportation researchers over the past two decades have
used various methods to contend with this difficult issue. In review-
ing the related literature, it is noticeable that recent studies for
dynamic O-D estimation can be classified into two main categories:
assignment- and non-assignment-based approaches. The former cat-
egory of approaches uses an assumption that a reliable prior O-D set
and a dynamic traffic assignment model that predicts route choice
behavior are available (1–10). Considering the practical difficulty
in having a reliable prior O-D, some researchers have devoted
themselves to developing various estimation approaches that can
use only the time series of available volume counts and thus reduce
the dependency of the prior O-D information (11–23). This study
follows the research line of non-assignment-based methods and
intends to estimate the dynamic freeway O-D based mainly on all
observable link and ramp flow rates.

Consider a typical freeway corridor of N segments ranging from
0 to N − 1 with link count information as indicated in Figure 1,
where detectors are placed at on-ramps, off-ramps, and mainline
links. The information readily available for estimation of its time-
dependent O-D flow proportion or dynamic O-D distribution is the
time series of entering flow [qi(k)], exiting flow [yi(k)], and mainline
flow [Ul(k)].

Let bij(k) denote the proportion of vehicles entering from origin i
to destination j during time interval k. By definition, it shall be
subjected to the following two constraints:

With the assumption that the trip time is negligible, the rela-
tions between entry and exiting flows can be formulated as 
follows (12):

The number of unknown variables for the example freeway as
indicated in Figure 1 is N × (N + 1)/2, and the number of equations
for Equations 3 is N. Obviously, when N is >1, the model is under-
determined, as there are more unknown parameters [bij(k)] than the
system equations.

To overcome the underdetermined nature, some studies assumed
that certain relations exist between O-D patterns during succes-
sive time intervals. The entire model can then be reformulated and
solved with statistical methods such as generalized least squares and
constrained least squares (11–16 ).

Most such models, based on input/output flow, use the assumption
that travel time between origins and destinations is either constant
or negligible. However, when the travel time is significantly long so
as to affect the input and output flow relationships, Equation 3 is no
longer valid, and the travel time factors must be explicitly captured
in the dynamic formulations. To contend with this issue, Bell (21) first
modeled the travel time factor in the presence of platoon dispersion.
In analyzing the turning movements at intersections, Bell’s study
assumed that travel time needed for vehicles to traverse the inter-
section does not exceed the length of one control time interval. Using
the platoon dispersion relation, he reformulated Equation 1 as the
following linear model:

where the additional smoothing parameter αj (0 ≤ αij ≤) also needs
to be estimated. However, by doing so, the number of unknown vari-
ables has been increased to N × (N + 3)/2, and the number of system
equations remains N.

Bell (22) further proposed an extended linear model dealing with
freely distributed travel times. The O-D proportion parameters are
decomposed with the travel time distributions
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where bijm denotes the proportion of trips from entrance i destined to
exit j with a travel time of m intervals, and m is the number of time
intervals required for vehicles from entrance i to exit j.

Equation 5 offers a more realistic formulation as the travel time for
an O-D pair may not be within the length of one unit time interval.
However, it cannot be effective if travel time spans more than two time
intervals. This is primarily due to the poor observability of the system
equations that involves relatively too many parameters bijm. In addition,
the assumption that the O-D flow proportion bijm remains constant
over the time period of interest may not be realistic.

Chang and Wu (23) proposed a freeway O-D estimation model by
using information from both mainline flow counts [Ul(k)] and ramp
flow measurements [qi(k) and yj(k)] to construct a set of dynamic
equations. To further capture the relation between O-D flow propor-
tions and traffic counts, they proposed a set of new variables, θ−

ij(k)
and θ+

ij(k), to represent the fraction of qi(k − m) � bij(k − m) trips that
arrive at off-ramp j during time interval k. In their model, the number
of unknown variables becomes (M + 1) × N × (N + 1)/2 and the num-
ber of system equations increases to 2N − 1. To improve the opera-
tional efficiency, they also proposed an algorithm that aims to estimate
an average bij(k) for some consecutive time intervals instead of solv-
ing an O-D flow distribution matrix for each time interval. The num-
ber of unknown variables under such a refined formulation reduces
to 3N × (N + 1)/2. Their formulations are based on the assumption that
the speeds of vehicles entering the freeway at the same time interval
are distributed in a small range.

In brief, to advance existing models for real-world application, one
needs to overcome the following three critical issues: the first is that
the system equations for O-D estimation only from traffic counts are
clearly underdetermined as the number of equations is always far less
than the O-D pairs. The second is that a developed model shall have
the capability of formulating a large-scale freeway network. The last
issue is to release the commonly used assumption that all entries and
exiting flow counts are available, or a reliable set of prior O-D for
model calibration exists. In reality, such information may be neither
complete nor accurate at the desirable level. Focusing on these three
issues, the study first proposes a model with an embedded function that
allows the travel times to exceed the unit control interval and vary over
a wide range. The applicability of the proposed model to a large free-
way network (i.e., the I-95 freeway corridor) is also investigated.
Finally, the robustness of the estimation results under potential
measurement errors is also evaluated with numerical experiments.

The remainder of this paper is organized as follows: the basic rela-
tions between the time-dependent O-D flows and the time-series
traffic measurements in a freeway corridor formulated with a non-
linear dynamic system model are illustrated in the next section; the
solution algorithm developed with the extended Kalman filtering
method is presented in the third section; simulation experiments and
sensitivity analyses for model stability evaluation are reported in
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the fourth section; and conclusions and further enhancements are
summarized in the last section.

MODEL FORMULATION

Consider a freeway corridor of N segments from 0 to N − 1 as indicated
in Figure 1, the set of variables used in modeling its dynamic traffic
flow and O-D relations:

q0(k) = number of vehicles entering the upstream boundary of the
freeway section during time interval k;

qi(k) = number of vehicle trips entering freeway from on-ramp i
during time interval k, i = 1, 2, . . . , N − 1;

yj(k) = number of vehicle trips leaving the freeway from off-
ramp j during time interval k, j = 1, 2, . . . , N − 1;

yn(k) = mainline volume at the downstream end of the freeway
section during time interval k;

Ui(k) = number of vehicles crossing the upstream boundary of
segment i during time interval k, i = 1, 2, . . . , N − 1;

Tij(k) = number of vehicles entering the freeway from on-ramp i
during time interval k that are destined to off-ramp j
(i.e., the time-dependent O-D flow), where 0 ≤ I < j ≤ N;

t0 = length of one unit time interval;
tij(k) = average travel time of vehicles from on-ramp i to off-

ramp j departing during time interval k;
σij(k) = standard deviation of the travel time for vehicles from

on-ramp i to off-ramp j departing during time interval k;
bij(k) = proportion of qi(k) heading toward destination node j

during time interval k; and
θ m

ij (k) = fraction of Tij(k − m) trips that arrive at off-ramp j during
time interval k.

With the preceding definitions, one can establish the following
relations based on Figure 1:

Equations 6 and 7 are subjected to Constraints 1 and 2 discussed
previously.

In view of the speed variation among drivers, it is reasonable to
assume that the departure times for vehicles from node i arriving at
node j during time interval k are distributed among time intervals k,
k − 1, . . . , and k − M, where M is the maximum number of intervals
required for vehicles to traverse the entire freeway section. The exit
traffic volume [yj(k)] can thus be stated as follows:

where θm
ij(k), a set of new time-dependent parameters, or state

variables, shall satisfy the following relations:
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FIGURE 1 Typical freeway corridor.



As discussed in the work by Chang and Wu (23), Equation 8 is
sufficient for capturing the dynamic relationships between O-D
patterns and link flows if the freeway is not congested and traffic
flow is stable. Otherwise, the time-varying traffic volume Ul (k)
cannot be determined simply with the entrance and exit flow data
qi (k) and yj (k). Hence, the measurements of {Ul (k)} may actually
provide additional valuable information for estimation. A new set
of constraints that uses the mainline traffic volume Ul (k) is given
as follows:

where � = 1, 2, . . . , N − 1.
However, it is noticeable that the system formulation contains a

large number of state variables—that is, bij(k) and θm
ij(k). The number

of these unknown parameters increases with the required M value. As
such, some more information and refinement are necessary to ensure
that this proposed model is computationally efficient and tractable.

To do so, one can assume that the travel times of drivers depart-
ing from i during time interval k to j follow a normal distribution,
N[µij(k), σij(k)], as indicated in Figure 2,

where

µij(k) = tij(k) = average travel time of vehicles from i to j departing
during interval k,

σij(k) = standard deviation of the travel time of vehicles
from i to j departing during interval k, and

ρm
ij (k) = fraction of Tij(k − m) trips from on-ramp i during

interval k that takes m time intervals to j.

The use of normal distribution to approximate the travel time dis-
tribution of vehicles with the same O-D has been reported in the
literature (22, 24), and this assumption was also supported by Grace
and Potts (25). Furthermore, Seddon (26) has examined the theoret-
ical basis for the recurrence model and found that it corresponds to
Pacey’s (27) diffusion model of platoon dispersion when the normal
distribution for vehicle speeds is replaced with the shifted geometric
distribution for travel times.

As indicated in Figure 3, because the travel time for an O-D pair
departing during the same time interval follows a normal distribution,
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ρm
ij (k) can be replaced with a cumulative density function within a

time interval, m, as follows:

where 0 ≤ ρm
ij (k) ≤ 1, 0 < i ≤ j ≤ N, and m = 0, 1, . . . , M.

In addition to the use of a normal distribution to represent the vari-
ation of travel time, one can also estimate the average b

–
ij (k) for con-

secutive intervals, instead of solving an O-D flow distribution matrix
for each small interval (23). Thus, all the bij(�) terms in Equations 8
and 11 can be replaced with b

–
ij(k)

With the preceding reformulations, the average travel time for each
O-D pair can be measured from the surveillance system, and the
unknown sets of variables are O-D proportions b

–
ij(k) and standard

deviations σij (k).

SOLUTION ALGORITHM

The number of unknown parameters under the revised formulations
is reduced to 2N × (N + 1)/2, compared with the model proposed by
Chang and Wu (23). However, because of the nonlinear nature of the
formulations and concerns about computing efficiency, this study
has used the sequential extended Kalman filtering algorithm (28) and
the Gumbel distribution (an approximation of the normal distribution)
to develop the solution algorithm. A step-by-step description of the
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algorithm for estimating the parameters bij(k) and σij(k) is presented
as follows:

Step 0. Initialize
• Link length Li, i = 0, 1, . . . , N − 1
• Length of each time interval t0, and the maximal number of

intervals required to traverse the entire section M
• Initial input mean speeds, Vi(m), m = −M, −M + 1, . . . , 0
• Initial input flows, qi(m), m = −M, −M + 1, . . . , 0
• Initial travel times, tij(m) = Li / Vi(m) + . . . + Lj−1/Vj−1(m), m =

−M, −M + 1, . . . , 0
• Var[e(k)] = diag[r1, r2, . . . , r2N−1]

where

Step 1. Compute travel time (mean value)

Step 2. Compute linearized transformation matrix

• Hk−1 = [Hrs
k−1 ](2N−1)×N(N+1)/2

• Jk−1 = [Jk−1
rs ](2N−1)×N(N+1)/2

• Jk
rs = 0. 

For the other entries of matrix Jk
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where each fi is a row vector of dimension N(N + 1)

•

Step 3. Initialize sequential Kalman filtering

• Set b0 = b(k − 1), σ0 = σ(k − 1)

• P0 = Pk−1 + D, where , Db = diag[db, . . . , db] is 

a covariance matrix of W(k), and Dσ is a constant semipositive
matrix.

Step 4. Sequential Kalman filtering iteration

For i = 1, 2, . . . , 2N − 1

• gi = Pi−1f T
i (Pi−1f T

i + ri)−1

• Pi = Pi−1 − gifiPi−1

• δi = yi(k) − fib(k − 1)
• Truncation

set 

• Normalization

For m = 1, 2, . . . , N − 2

Step 5. Predict states

• Set Pk = P2N−1

k = k + 1, go to Step 1 for the next interval.
Although the extended Kalman filtering algorithm for the O-D

parameter estimation cannot guarantee an unbiased minimum vari-
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ance estimate, it has been found to be very efficient in many appli-
cations (29). However, such a nonlinear model remains somewhat
complex because of the large dimension of its state vector. For online
applications, one may choose to trade accuracy, to some extent, for
computing efficiency. To properly execute the preceding algorithm,
care should be exercised on the following issues (30):

• The variance–covariance matrices are not known. As often used
in the control study, they can be assumed as diagonal matrices with
their diagonal element values lying within interval (0,1). The obser-
vation error variance {ri} is often presumed to be the square of an
estimated flow measurement error.

• As a general guideline, the segment length should be consistent
with two basic requirements: containing no more than one pair of
on- and off-ramps for modeling, and computational convenience.

• In terms of the time interval selection, theoretically, a shorter
time duration can better accommodate the dynamic O-D flow pat-
tern. However, to be both effective and efficient in applications,
the time interval should be shorter than the travel time of each seg-
ment and between 1 and 5 minutes, depending on the level of con-
gestion.

NUMERICAL EXAMPLE

This section presents two numerical results with example networks.
The first small freeway network is designed to evaluate the proposed
model’s performance with respect to its initial values and potential
measurement errors in travel time. A large freeway network, based
on the I-95 freeway corridor, is presented to demonstrate the model’s
potential for real-world applications. The sensitivity analyses were
performed with the following procedures:

Step 0. Generation of data set for experimental analysis. To gen-
erate a meaningful data set for numerical analysis, the example free-
way system under the presumed time series O-D percentages was
simulated with AIMSUN 4.0 (31) to produce the time-dependent
link traffic volumes. The traffic flow data were collected at an interval
of 1 minute over the entire simulation duration. Figure 4 presents the
example freeway section for the model sensitivity test.

Step 1. Random generation of several sets of initial values. To test
the model performance under a different set of initial values, this
study has generated the following five experimental sets for use in
executing the proposed solution algorithm:

• Ib1 = (0.20 0.32 0.48 0.20 0.32 0.48), the exact initial value
set;

• Ib2 = (0.33 0.33 0.33 0.33 0.33 0.33), the uniform initial
value set;
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• Ib3 = (0.25 0.29 0.46 0.25 0.29 0.46), the initial value set
with certain random variation;

• Ib4 = (0.40 0.30 0.30 0.40 0.30 0.30), the initial value set
with random variations more than those in Ib3; and

• Ib5 = (0.50 0.40 0.10 0.50 0.40 0.10), the initial value set with
random variations more than those in Ib4.
Step 2. Generation of travel time variation. Aside from the set of

the initial values, the actual distribution of travel times is one of the
important factors that could influence the estimated O-D proportions.
To test the robustness of the proposed travel time formulation, the
exact initial value set Ib1 is selected for executing the estimation algo-
rithm, and the average travel time is randomly increased or decreased
between 5%, 10%, and 15% from the average travel time for model
performance evaluation.

Step 3. Evaluation of performances. The root-mean-square error
(RMSE) used as the evaluation criterion is defined as follows:

The estimation results for these sets of O-D proportions are pre-
sented in Figure 5. The RMSE statistics are reported in Table 1. It is
noticeable that, with the reasonable range of the initial values, the esti-
mation results with the proposed algorithms are quite stable and vary
in a small range as indicated in Figure 5.

Table 2 presents the RMSE under different levels of travel time
variation, and Figure 6 presents the estimated O-D proportions
under various travel times. It can be noted that the proposed model
yields quite stable results, where the RMSE remains nearly constant
even when the average travel times are up to 15% measurement
errors.

To demonstrate the potential of the proposed O-D estimation model,
this study has evaluated its performance with the I-95 freeway cor-
ridor between the I-495 and I-695 beltways in Maryland, which con-
sists of seven main interchanges, 12 on-ramps, and 14 off-ramps. The
total number of O-D pairs for this network amounts to 120. For con-
venience of model formulations, each interchange is represented with
only one pair of on-ramp and off-ramp, and the network is thus reduced
to seven pairs of on-ramps and off-ramps, and 36 O-D sets as indicated
in Figure 7.

Table 3 presents the input O-D demands over 1-hour simulation
with a unit interval of 2 minutes. Using the first time-period O-D pro-
portions as the initial set of O-D values, the average RMSE for all
O-D pairs is 0.0454. This distribution of RMSE for all estimated
O-D pairs is presented in Table 4, and the estimated results for two
example O-D pairs are presented in Figures 8 and 9.

RMSE =
−( )

=
∑ x x

N

i

i

N
2

1

7888 ft 5666 ft13999 ft

y5U1q1

y4y3q2

1444 ft

FIGURE 4 Small example freeway section for model sensitivity test.
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FIGURE 5 Estimation results with different sets of initial values: (a) b13, (b) b23, (c) b14, (d) b24, (e) b15, 
and (f ) b25.

TABLE 1 RMSE Statistics with Different Initial Values

RMSE RMSE RMSE RMSE RMSE RMSE Avg
Initial Value (b13) (b14) (b15) (b23) (b24) (b25) RMSE

Ib1 0.0315 0.0237 0.0301 0.0316 0.0232 0.0308 0.0285

Ib2 0.0316 0.0296 0.0452 0.0424 0.0301 0.0486 0.0379

Ib3 0.0326 0.0232 0.0301 0.0303 0.0223 0.0296 0.0280

Ib4 0.0469 0.0291 0.0389 0.0445 0.0269 0.0401 0.0377

Ib5 0.0570 0.0270 0.0506 0.0741 0.0233 0.0737 0.0510
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TABLE 2 RMSE Statistics Under Different Levels of Travel Time Variation

Travel Time RMSE RMSE RMSE RMSE RMSE RMSE Avg
Variation (b13) (b14) (b15) (b23) (b24) (b25) RMSE

0% 0.0315 0.0237 0.0301 0.0316 0.0232 0.0308 0.0285

5% 0.0288 0.0275 0.0424 0.0297 0.0275 0.0437 0.0333

10% 0.0327 0.0210 0.0333 0.0394 0.0192 0.0375 0.0305

15% 0.0317 0.0240 0.0330 0.0387 0.0283 0.0349 0.0318
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FIGURE 6 Estimation results with different levels of travel time variations: (a) b13, (b) b23, (c) b14, (d) b24,
(e) b15, and (f ) b25.
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TABLE 3 Input O-D Demand for 1-h Simulation

Destination

Origin
0 1 2 3 4 5 6 7 8 Oi

0 — 1,371 1,190 749 827 692 560 570 375 6,334

1 — — 212 303 186 214 226 264 210 1,615

2 — — — 484 395 196 348 224 311 1,958

3 — — — — 344 263 170 218 390 1,385

4 — — — — — 166 206 306 980 1,658

5 — — — — — — 185 134 248 567

6 — — — — — — — 318 1,031 1,349

7 — — — — — — — — 1,338 1,338

8 — — — — — — — — — —

Dj — 1,371 1,402 1,536 1,752 1,531 1,695 2,034 4,883 16,204

TABLE 4 RMSE Statistics for I-95 Freeway Corridor

O-D pair b01 b02 b03 b04 b05 b06 b07 b08 b12 b13 b14 b15

RMSE 0.0396 0.0451 0.0197 0.0185 0.0186 0.0231 0.0245 0.0472 0.0361 0.0525 0.0401 0.0451

O-D pair b16 b17 b18 b23 b24 b25 b26 b27 b28 b34 b35 b36

RMSE 0.0411 0.0405 0.0382 0.0512 0.0393 0.0297 0.0373 0.0424 0.0436 0.0349 0.0543 0.0462

O-D pair b37 b38 b45 b46 b47 b48 b56 b57 b58 b67 b68 avg.
RMSE 0.0450 0.0438 0.0426 0.0295 0.0622 0.0946 0.0815 0.0850 0.1035 0.0688 0.0688 0.0454

I-495 I-695
MD-212 MD-198 MD-216 MD-32 MD-175 MD-100 I-895 I-195

q0 y8

N

U1 U7U6U5U4U3U2

q1y1 q2y2 q3y3 q4y4 q5y5 q6y6 y7 q7

FIGURE 7 Graphic illustration of main interchanges for I-95 freeway corridor.

In Figure 8, the pattern of the estimated O-D proportions is very
close to the real pattern and the RMSE is 0.0185. In Figure 9, the
variation of the beginning time interval appears flatter than the real
pattern. This might be due to the setting of the covariance matrix and
the relatively smaller O-D demand (206 vehicles per hour compared
with 827 vehicles per hour for b04 as indicated in Table 3). How-
ever, the estimation result is still within a reasonable range (the
RMSE is 0.0295) and the pattern of the latter time interval is getting
closer to the real pattern after several updates of the covariance
matrix.

CONCLUSIONS

This study has presented a new dynamic model for estimating the
time-varying freeway O-D matrices. The proposed model features
its robustness in minimizing the impacts of travel time variability
on the estimation results. With the embedded travel time function,
the proposed model can reliably estimate the dynamic O-D pairs
that may be distributed over a relatively long distance and take a
relatively long travel time. The reduced number of parameters

also enables the proposed model to have better potential for effi-
cient applications. To ensure the applicability of the proposed
model for a large-scale network, the study has constructed a sim-
ulator for the I-95 freeway corridor in Maryland with the simula-
tion program AIMSUN 4.0 and performed the model applicability
evaluation. The results indicate that the proposed model can yield
reasonable estimates of dynamic O-D proportions for large freeway
corridors.

One of the critical issues that remains to be investigated in the devel-
opment of a dynamic O-D model is how best to approximate the ini-
tial values of each O-D set from measurable information so that the
estimation process with the recursive computing algorithm such as
extended Kalman filtering can evolve efficiently to a reliable and
stable state.
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FIGURE 8 Estimation result of O-D pair b04 (with 0.0185 RMSE).
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FIGURE 9 Estimation result of O-D pair b46 (with 0.0295 RMSE).


