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Thisstudy presentsarobust model for estimating the dynamic freeway
origin—destination matrix with a measur able time series of ramp and
mainlineflows. Theproposed model capturesthe speed varianceamong
vehicleshaving the samedeparturetime, origin, and destination with an
embedded travel timedistribution function that resultsin a substantial
reduction in model parameters. With the developed solution algorithm,
the proposed model offersthe potential usein anetwork of realistic size
such asthel-95freeway corridor between theMaryland |-695 and 1-495
beltways. Extensive numerical analyseswith respect to the sensitivity of
both input measurement errorsand theselection of initial parameter shave
revealed that the proposed model is sufficiently robust for real-world
applications.

Dynamic origin—destination (O-D) matrices are essential input
information for a variety of traffic control applications, such as
real-time route guidance and dynamic traffic assignment. Because
the actual number of variablesto be estimated for either astatic or
a dynamic system is always far greater than the available infor-
mation, transportation researchers over the past two decades have
used various methodsto contend with thisdifficult issue. In review-
ing the related literature, it is noticeable that recent studies for
dynamic O-D estimation can be classified into two main categories:
assignment- and non-assi gnment-based approaches. The former cat-
egory of approaches uses an assumption that areliable prior O-D set
and adynamic traffic assignment model that predicts route choice
behavior are available (1-10). Considering the practical difficulty
in having a reliable prior O-D, some researchers have devoted
themselves to developing various estimation approaches that can
use only thetime series of available volume counts and thus reduce
the dependency of the prior O-D information (11-23). This study
follows the research line of non-assignment-based methods and
intends to estimate the dynamic freeway O-D based mainly on all
observable link and ramp flow rates.

Consider atypical freeway corridor of N segmentsranging from
0to N — 1 with link count information as indicated in Figure 1,
where detectors are placed at on-ramps, off-ramps, and mainline
links. The information readily available for estimation of itstime-
dependent O-D flow proportion or dynamic O-D distribution is the
time series of entering flow [q;(K)], exiting flow [yi(K)], and mainline
flow [U,(K)].
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Let by;(k) denote the proportion of vehicles entering from origin i
to destination j during time interval k. By definition, it shall be
subjected to the following two constraints:

0<h®<1l 0<i<j<N @
N
Y b=1 i=01...,N-1 %)
j=i+l

With the assumption that the trip time is negligible, the rela-
tions between entry and exiting flows can be formulated as
follows (12):

j-1
vl =Y bdogho  j=12...,N ©)
i=0

The number of unknown variables for the example freeway as
indicated in Figure 1is N x (N + 1)/2, and the number of equations
for Equations 3 isN. Obviously, when N is>1, the model isunder-
determined, as there are more unknown parameters [by;(k)] than the
system equations.

To overcome the underdetermined nature, some studies assumed
that certain relations exist between O-D patterns during succes-
sivetime intervals. The entire model can then be reformulated and
solved with statistical methods such as generalized |east squares and
constrained least squares (11-16).

Most such models, based on input/output flow, use the assumption
that travel time between origins and destinations is either constant
or negligible. However, when thetravel timeissignificantly long so
asto affect theinput and output flow relationships, Equation 3isno
longer valid, and the travel time factors must be explicitly captured
inthedynamic formulations. To contend with thisissue, Bell (21) first
modeled the travel timefactor in the presence of platoon dispersion.
In analyzing the turning movements at intersections, Bell’s study
assumed that travel time needed for vehiclesto traverse the inter-
section does not exceed the length of one control timeinterval. Using
the platoon dispersion relation, he reformulated Equation 1 asthe
following linear model:

y, (K=(1-a,) y,(k=-D+o, g k) b, (k) 4

where the additional smoothing parameter o; (0 < o;; <) also needs
to be estimated. However, by doing so, the number of unknown vari-
ables has been increased to N x (N + 3)/2, and the number of system
equations remains N.

Bell (22) further proposed an extended linear model dealing with
freely distributed travel times. The O-D proportion parameters are
decomposed with the travel time distributions
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FIGURE 1 Typical freeway corridor.
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gk —mb, j=12...,N (5)

where by, denotes the proportion of tripsfrom entrancei destined to
exit j with atravel time of mintervals, and misthe number of time
intervals required for vehicles from entrancei to exit j.

Equation 5 offersamoreredlistic formulation asthetravel timefor
an O-D pair may not be within the length of one unit time interval.
However, it cannot be effectiveif travel time spansmorethantwotime
intervals. Thisisprimarily dueto the poor observability of the system
equationsthat involvesrelatively too many parametersby,. Inaddition,
the assumption that the O-D flow proportion by, remains constant
over the time period of interest may not be realistic.

Chang and Wu (23) proposed afreeway O-D estimation model by
using information from both mainline flow counts [U,(k)] and ramp
flow measurements [q;(K) and y;(k)] to construct a set of dynamic
equations. To further capture the relation between O-D flow propor-
tions and traffic counts, they proposed a set of new variables, 6;(K)
and 6;(K), to represent the fraction of g,(k— m) - b (k — m) trips that
arrive at off-ramp j during timeinterval k. In their model, the number
of unknown variablesbecomes (M + 1) x N x (N + 1)/2 and the num-
ber of system equationsincreasesto 2N — 1. To improve the opera-
tional efficiency, they also proposed an algorithm that aimsto estimate
an average b;(K) for some consecutivetimeintervalsinstead of solv-
ing an O-D flow distribution matrix for each timeinterval. The num-
ber of unknown variables under such arefined formulation reduces
to 3N x (N+ 1)/2. Their formulations are based on the assumption that
the speeds of vehicles entering the freeway at the sametimeinterval
are distributed in asmall range.

In brief, to advance existing modelsfor real-world application, one
needsto overcomethefollowing three critical issues: thefirst isthat
the system equationsfor O-D estimation only from traffic countsare
clearly underdetermined asthe number of equationsisalwaysfar less
than the O-D pairs. The second isthat adeveloped model shall have
the capability of formulating alarge-scal e freeway network. Thelast
issueisto releasethe commonly used assumption that all entriesand
exiting flow counts are available, or areliable set of prior O-D for
model calibration exists. Inreality, such information may be neither
complete nor accurate at the desirablelevel . Focusing on thesethree
issues, the study first proposesamodel with an embedded function that
allowsthetravel timesto exceed the unit control interval and vary over
awiderange. The applicability of the proposed model to alarge free-
way network (i.e., the 1-95 freeway corridor) is also investigated.
Finally, the robustness of the estimation results under potential
measurement errorsis aso evaluated with numerical experiments.

Theremainder of thispaper isorganized asfollows:. thebasicrela
tions between the time-dependent O-D flows and the time-series
traffic measurementsin afreeway corridor formulated with anon-
linear dynamic system model areillustrated in the next section; the
solution algorithm devel oped with the extended Kalman filtering
method is presented in the third section; simulation experimentsand
sensitivity analyses for model stability evaluation are reported in
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the fourth section; and conclusions and further enhancements are
summarized in the last section.

MODEL FORMULATION

Consider afreeway corridor of N segmentsfromOto N— 1 asindicated
in Figure 1, the set of variables used in modeling its dynamic traffic
flow and O-D relations:

0o(K) = number of vehiclesentering the upstream boundary of the
freeway section during time interval k;
gi(K) = number of vehicletrips entering freeway from on-rampi
duringtimeinterva k,i=1,2,...,N-1;
yj(k) = number of vehicle trips leaving the freeway from off-
rampj duringtimeinterva k,j=1,2, ..., N-1,
yn(K) = mainline volume at the downstream end of the freeway
section during time interval k;
U;(K) = number of vehicles crossing the upstream boundary of
segment i during timeinterval k,i=1,2,...,N—-1;
T;;(K) = number of vehicles entering the freeway from on-ramp i
during time interval k that are destined to off-ramp j
(i.e., thetime-dependent O-D flow), where0< | <j <N;
to = length of one unit timeinterval;
tj(k) = average travel time of vehicles from on-ramp i to off-
ramp j departing during timeinterval k;
o;j(k) = standard deviation of the travel time for vehicles from
on-ramp i to off-ramp j departing during timeinterval k;
b;j(k) = proportion of ¢ (k) heading toward destination node |
during time interval k; and
07 (k) = fraction of T;;(k— m) tripsthat arrive at off-ramp j during
timeinterval k.

With the preceding definitions, one can establish the following
relations based on Figure 1:

qi(k):i'l'ij(k) i=01...,N-1 (6)

T,(K=q b (k) 0<i<j<N (7)

Equations 6 and 7 are subjected to Constraints 1 and 2 discussed
previously.

Inview of the speed variation among drivers, it is reasonable to
assume that the departure times for vehicles from nodei arriving at
nodej during timeinterval k are distributed among timeintervalsk,
k—1,...,andk— M, where M isthe maximum number of intervals
required for vehiclesto traverse the entire freeway section. The exit
traffic volume [y; (K)] can thus be stated as follows:

-

M j=
0 =3 Y Tk - mefko

i=0
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M=

i=12....,.N (8

0
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o

where 0{(k), a set of new time-dependent parameters, or state
variables, shall satisfy the following relations:

0<er<l O0<i<j<N m=01....,M )
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M
York+m=1 0<i<j<N (10)
m=0

Asdiscussed in the work by Chang and Wu (23), Equation 8 is
sufficient for capturing the dynamic relationships between O-D
patterns and link flowsif the freeway is not congested and traffic
flow is stable. Otherwise, the time-varying traffic volume U, (k)
cannot be determined simply with the entrance and exit flow data
g (K) andy; (k). Hence, the measurements of { U, (k)} may actually
provide additional valuableinformation for estimation. A new set
of constraints that uses the mainline traffic volume U, (k) isgiven
asfollows:

U0=333 qlk-merb, (k-m+q K
U0-qW=33 qk-mertan, (k—m 1)

where€¢=1,2,...,N-1.

However, it is noticeable that the system formulation contains a
large number of state variables—that is, b;(k) and 6{/(k). The number
of these unknown parametersincreaseswith therequired M value. As
such, some moreinformation and refinement are necessary to ensure
that this proposed model is computationally efficient and tractable.

To do so, one can assume that the travel times of drivers depart-
ing fromi during timeinterval ktoj follow anormal distribution,
N[;(K), 6;i(K)], asindicated in Figure 2,

where

;i (K) = tj(k) = averagetravel timeof vehiclesfromi toj departing
during interval k,
G;i(K) = standard deviation of the travel time of vehicles
fromi toj departing during interval k, and
pi (K) = fraction of T;(k — m) trips from on-ramp i during
interval k that takesmtimeintervalstoj.

The use of normal distribution to approximatethetravel timedis-
tribution of vehicles with the same O-D has been reported in the
literature (22, 24), and this assumption was al so supported by Grace
and Potts (25). Furthermore, Seddon (26) has examined the theoret-
ical basis for the recurrence model and found that it corresponds to
Pacey’ s (27) diffusion model of platoon dispersion when the normal
distribution for vehicle speedsis replaced with the shifted geometric
distribution for travel times.

Asindicated in Figure 3, because the travel time for an O-D pair
departing during the sametimeinterva followsanormal distribution,
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FIGURE 2 Assumed distribution of travel times
for drivers from i/ during interval k to j.
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FIGURE 3 Probability of travel time distribution.

pi(K) can be replaced with a cumulative density function within a
timeinterval, m, asfollows:

(m+D-tg
prt = | foodx 12
]
m-to
M
Y opitk—m =1 (13)
m=0

where0<pf(K)<1,0<i<j<N,andm=0,1,..., M.

In addition to the use of anormal distribution to represent the vari-
ation of travel time, one can also estimate the average Bij (k) for con-
secutiveintervals, instead of solving an O-D flow distribution matrix
for each small interval (23). Thus, al the by(-) termsin Equations 8
and 11 can be replaced with by (k)

-

M —_
yio =Y Y [ak - mpfdo] - bk
m=0 i=0
Moj-1 (m+D-tg _
=y |:qi(k -m- j f(x)dx]-lqj(k) (14
m=0 i=0 m-tg
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-
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[a(k — mpP]- by

=0+1

(m+D-tg
[q,[k- m- ff(x)dx]]-ﬁj(k) (15)
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With the preceding reformulations, the averagetravel timefor each
O-D pair can be measured from the surveillance system, and the
unknown sets of variables are O-D proportions Bi,-(k) and standard
deviations o; (K).

SOLUTION ALGORITHM

The number of unknown parameters under the revised formulations
isreduced to 2N x (N + 1)/2, compared with the model proposed by
Chang and Wu (23). However, because of the nonlinear nature of the
formulations and concerns about computing efficiency, this study
has used the sequential extended Kalman filtering algorithm (28) and
the Gumbel distribution (an approximeation of thenormal distribution)
to develop the solution algorithm. A step-by-step description of the
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agorithm for estimating the parameters b; (k) and o;(K) is presented
asfollows:

Step 0. Initialize

e LinklengthL;,i=0,1,...,N-1

e | ength of each timeinterval t,, and the maximal number of
intervals required to traverse the entire section M

e |nitial input mean speeds, V,(m), m=-M,-M+1, ..., 0

e |nitia input flows, g(m), m=-M,-M+1,...,0

e [nitial travel times, t;(m) = Li/Vi(m) + - - - + Li_y/Vj.((m), m=
-M,-M+1,...,0

e Var[e(K)] =diag[ry, ra, - .., ]

{b(O)} [b(O)] {b(O)}
= E B =Va
c(0) c(0) [1(V)]

where
by, (K b ... Bk
b, (K

bk =[] =|
by_1, (KO by_n (K

6(K)=[6,(k), 00, (K),...,60 (K),0,,(K),...,0y 1\ (K]
Step 1. Compute travel time (mean value)

w0 = t;0
Step 2. Compute linearized transformation matrix

o Hl=[H 1](2N—l)><N(N+l)/2

M
ij,Ni+ifi(i+1>/2 = 2 gk — m-{F,[c; K] = F[o; K]}
m=0

for0<i<j<N

M
Hivoniegiasme = 3, Gk = M- {Fpu[0; (0] = Fo[o; K]}
m=0
for0<i</<j<N
o I =[J5Y (on-aypennis1yr2

M
ij,Ni+j—i(i+1)/2 = ZQ,(k - m)~hj(k), for0<i < J <N

m=0

M
‘]l'\<1+ﬁ,Ni+/:—i<i+1)/2 = ZQi(k - m)'Zhj(k)y for0<i</<j<N
m=0 jst
e JX=0.
For the other entries of matrix J
f;

f K-1 k-1
= [H*" 3 on-panens

o J =

f2N—1

where each f; isarow vector of dimension N(N + 1)
4

Z
o 7'(k)

LN
[y, ...
Un_1(K) = gy (K]

LY (0, Uy (0 — qu(K), . . .

Step 3. Initialize sequential Kalman filtering

e Setb’=b(k—1), 6°= (k- 1)

D
e PO=P,,+ D, where D { bD],Dbzdiag[db ..... d] is

a covariance matrix of W(k), and D, is a constant semipositive
matrix.

Step 4. Sequential Kalman filtering iteration
Fori=1,2,...,2N-1
g =P TP +r)?
P =p-1_ gifipi—l

&' =yi(k) - fib(k—1)
Truncation

i-1
o = max{oc\o < (2,711 +od'g < 1}

0<a<]]

bi bi—l o
%t[ Jz[ . ]+a/8lgl
cl Glfl

e Normalization

Form=1,2,...,N-2

b= D b

j=m+1

by = by/Bmi=m+1...,N

Step 5. Predict states

* SetP =P2vi

b(k) bt
olo] | gt
k=Kk+ 1, goto Step 1 for the next interval.

Although the extended Kalman filtering algorithm for the O-D
parameter estimation cannot guarantee an unbiased minimum vari-
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ance estimate, it has been found to be very efficient in many appli-
cations (29). However, such anonlinear model remains somewhat
complex because of thelarge dimension of itsstate vector. For online
applications, one may choose to trade accuracy, to some extent, for
computing efficiency. To properly execute the preceding algorithm,
care should be exercised on the following issues (30):

e Thevariance-covariance matrices are not known. Asoften used
in the control study, they can be assumed as diagonal matriceswith
their diagonal element valueslying withininterval (0,1). The obser-
vation error variance{r;} isoften presumed to be the square of an
estimated flow measurement error.

e Asageneral guideline, the segment length should be consistent
with two basic requirements: containing no more than one pair of
on- and off-ramps for modeling, and computational convenience.

e |ntermsof thetimeinterval selection, theoretically, ashorter
time duration can better accommodate the dynamic O-D flow pat-
tern. However, to be both effective and efficient in applications,
thetimeinterval should be shorter than the travel time of each seg-
ment and between 1 and 5 minutes, depending on the level of con-
gestion.

NUMERICAL EXAMPLE

This section presentstwo numerical results with example networks.
Thefirst small freeway network is designed to eval uate the proposed
model’ s performance with respect to itsinitial values and potential
measurement errorsin travel time. A large freeway network, based
onthel-95 freeway corridor, is presented to demonstrate the model’ s
potential for real-world applications. The sensitivity analyses were
performed with the following procedures:

Step 0. Generation of data set for experimental analysis. To gen-
erate ameaningful data set for numerical analysis, the example free-
way system under the presumed time series O-D percentages was
simulated with AIMSUN 4.0 (31) to produce the time-dependent
link traffic volumes. Thetraffic flow datawere collected at an interval
of 1 minute over the entire simulation duration. Figure 4 presentsthe
example freeway section for the model sensitivity test.

Step 1. Random generation of several setsof initial values. Totest
the model performance under a different set of initial values, this
study has generated the following five experimental sets for usein
executing the proposed solution a gorithm:

e |b1=(0.200.320.48 0.20 0.32 0.48), the exact initia value
Set;

e |b2 =(0.33 0.33 0.33 0.33 0.33 0.33), the uniform initial

value set;

7888 ft i

1444 ft
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e b3 =(0.250.29 0.46 0.25 0.29 0.46), the initial value set
with certain random variation;

e |b4 = (0.40 0.30 0.30 0.40 0.30 0.30), the initial value set
with random variations more than those in [b3; and

e |b5=(0.500.400.100.500.400.10), theinitial valueset with
random variations more than those in |b4.

Step 2. Generation of travel timevariation. Aside from the set of
theinitial values, the actua distribution of travel timesisone of the
important factorsthat could i nfluence the estimated O-D proportions.
To test the robustness of the proposed travel time formulation, the
exactinitial valueset Ib1isselected for executing the estimation algo-
rithm, and theaveragetravel timeisrandomly increased or decreased
between 5%, 10%, and 15% from the average travel time for model
performance evaluation.

Step 3. Evaluation of performances. The root-mean-square error
(RMSE) used as the evaluation criterion is defined as follows:

RMSE =

The estimation results for these sets of O-D proportions are pre-
sented in Figure 5. The RM SE statisticsarereportedin Table 1. Itis
noticeable that, with the reasonable range of theinitial values, the esti-
mation resultswith the proposed algorithms are quite stable and vary
inasmall range asindicated in Figure 5.

Table 2 presents the RMSE under different levels of travel time
variation, and Figure 6 presents the estimated O-D proportions
under various travel times. It can be noted that the proposed model
yields quite stableresults, where the RM SE remains nearly constant
even when the average travel times are up to 15% measurement
errors.

To demonstratethe potential of the proposed O-D estimation model,
this study has evaluated its performance with the 1-95 freeway cor-
ridor between the 1-495 and 1-695 beltwaysin Maryland, which con-
sistsof seven main interchanges, 12 on-ramps, and 14 off-ramps. The
total number of O-D pairsfor thisnetwork amountsto 120. For con-
venience of model formulations, each interchangeisrepresented with
only onepair of on-ramp and off-ramp, and the network isthus reduced
to seven pairsof on-rampsand off-ramps, and 36 O-D setsasindicated
inFigure7.

Table 3 presents the input O-D demands over 1-hour simulation
withaunitinterval of 2 minutes. Using thefirst time-period O-D pro-
portions as the initial set of O-D values, the average RM SE for all
O-D pairsis 0.0454. This distribution of RMSE for all estimated
O-D pairsispresented in Table 4, and the estimated results for two
example O-D pairs are presented in Figures 8 and 9.

FIGURE 4 Small example freeway section for model sensitivity test.
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FIGURE 5 Estimation results with different sets of initial values: (a) b13, (b) b23, (c) b14, (d) b24, (e) b15,

and (f
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TABLE 1 RMSE Statistics with Different Initial Values
RMSE RMSE RMSE RMSE RMSE RMSE Avg

Initial Value (by) (bs) (b15) () (b24) (b5) RMSE
b1l 0.0315 0.0237 0.0301 0.0316 0.0232 0.0308 0.0285
1b2 0.0316 0.0296 0.0452 0.0424 0.0301 0.0486 0.0379
1b3 0.0326 0.0232 0.0301 0.0303 0.0223 0.0296 0.0280
1b4 0.0469 0.0291 0.0389 0.0445 0.0269 0.0401 0.0377
1b5 0.0570 0.0270 0.0506 0.0741 0.0233 0.0737 0.0510
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TABLE 2 BMSE Statistics Under Different Levels of Travel Time Variation

Travel Time RMSE RMSE RMSE RMSE RMSE RMSE Avg
Variation (by) (bra) (bs) (b23) (b24) (25 RMSE

0% 0.0315 0.0237 0.0301 00316 0.0232 0.0308 0.0285
5% 0.0288 0.0275 0.0424 0.0297 0.0275 0.0437 0.0333
10% 0.0327 0.0210 0.0333 0.0394 0.0192 0.0375 0.0305
15% 0.0317 0.0240 0.0330 0.0387 0.0283 0.0349 0.0318
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FIGURE 6 Estimation results with different levels of travel time variations: (a) b13, (b) b23, (c) b14, (d) b24,

(e) b15, and (f) b25.
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FIGURE 7 Graphic illustration of main interchanges for 1-95 freeway corridor.

In Figure 8, the pattern of the estimated O-D proportionsis very
close to the real pattern and the RMSE is 0.0185. In Figure 9, the
variation of the beginning time interval appears flatter than the real
pattern. Thismight be dueto the setting of the covariance matrix and
therelatively smaller O-D demand (206 vehicles per hour compared
with 827 vehicles per hour for b04 as indicated in Table 3). How-
ever, the estimation result is still within a reasonable range (the
RM SE is0.0295) and the pattern of thelatter timeinterval isgetting
closer to the real pattern after several updates of the covariance
matrix.

CONCLUSIONS

This study has presented anew dynamic model for estimating the
time-varying freeway O-D matrices. The proposed model features
its robustness in minimizing the impacts of travel time variability
on the estimation results. With the embedded travel time function,
the proposed model can reliably estimate the dynamic O-D pairs
that may be distributed over arelatively long distance and take a
relatively long travel time. The reduced number of parameters

also enables the proposed model to have better potential for effi-
cient applications. To ensure the applicability of the proposed
model for alarge-scale network, the study has constructed a sim-
ulator for the 1-95 freeway corridor in Maryland with the simul a-
tion program AIMSUN 4.0 and performed the model applicability
evaluation. Theresultsindicate that the proposed model canyield
reasonabl e estimates of dynamic O-D proportionsfor large freeway
corridors.

Oneof thecritical issuesthat remainsto beinvestigated inthedevel-
opment of adynamic O-D model ishow best to approximate theini-
tial values of each O-D set from measurable information so that the
estimation process with the recursive computing algorithm such as
extended Kalman filtering can evolve efficiently to areliable and
stable state.
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TABLE 3 Input O-D Demand for 1-h Simulation
Destination

Origin 0 1 2 3 5 6 7 8 Qi

0 — 1,371 1,190 749 827 692 560 570 375 6,334

1 — — 212 303 186 214 226 264 210 1,615

2 — — — 484 395 196 348 224 311 1,958

3 — — — — 344 263 170 218 390 1,385

4 — — — — — 166 206 306 980 1,658

5 — — — — — — 185 134 248 567

6 — — — — — — — 318 1,031 1,349

7 — — — — — — — — 1,338 1,338

8 J— J— J— J— J— J— J— J— J— J—

Dj — 1,371 1,402 1,536 1,752 1,531 1,695 2,034 4,883 16,204
TABLE 4 BMSE Statistics for I-95 Freeway Corridor
O_D palr bOl b02 b03 b04 b05 b07 b08 b12 b13 b14 b15
RMSE 0.0396 0.0451 0.0197 0.0185 0.018 0.0231 0.0245 0.0472 0.0361 0.0525 0.0401 0.0451
O-D pa” blG bl7 blS b23 b24 bZG b27 b28 b34 b35 b36
RMSE 0.0411 0.0405 0.0382 0.0512 0.0393 0.0297 0.0373 0.0424 0.0436 0.0349 0.0543 0.0462
O-Dpair by bzg bas bse b7 D56 bs7 Dsg be; Des avg.
RMSE 0.0450 0.0438 0.0426 0.0295 0.0622 0.0946 0.0815 0.0850 0.1035 0.0688 0.0688 0.04
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FIGURE 8 Estimation result of 0O-D pair b04 (with 0.0185 RMSE).
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