

Design, Deployment, and Evaluation of the Dilemma Zone Protection System

Sung Yoon Park, Ph.D. Candidate

Directed by Professor Gang-Len Chang Department of Civil and Environmental Engineering University of Maryland, College Park

Types of the Intersection Accidents?

32.4%

DZPS (System-I)

(Source: U.S. Department of Transportation, National Highway Traffic Safety Administration.)

Rear-End

Introduction

Source: http://crownheights.info/accidents/page/4/

Side-angle

Pre-deployment

Process

Field Data

Evaluation

Source: https://www.autobody-review.com/shop/10162/david-mauscollision-center/article/3180/steering-clear-of-the-yellow-light-trap

Source: http://www.insurancefraud.org/scam-alerts-staged-crash.htm

Pedestrians/cyclist

System-II

Conclusion and

Future Study

Source: http://www.dailymail.co.uk/news/article-3335035/So-wrong-time-Cyclist- 2 colliding-pedestrian-sparks-new-debate-taxi-video-divided-internet.html

Majority of the Intersection Accidents

DZPS (System-I)

Pre-deployment

Process

System-II

Vehicles running on the red phase

Introduction

-OR-

53.6%

Vehicles making hard breaking at the intersection

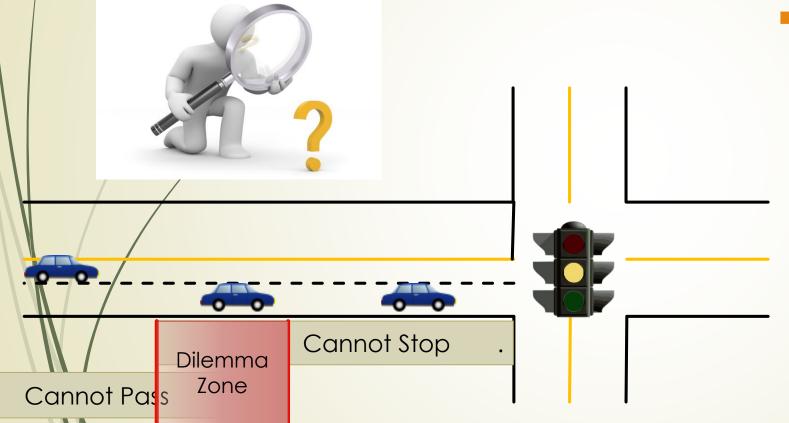
Field Data

Evaluation

Conclusion and

Future Study

Source: http://www.sheepsheadbites.com/2012/09/while-dot-studies-anotheraccident-on-bedford-avenue-and-emmons-avenue/v



Contributing Factors to Intersection Accidents ?

Pre-deployment

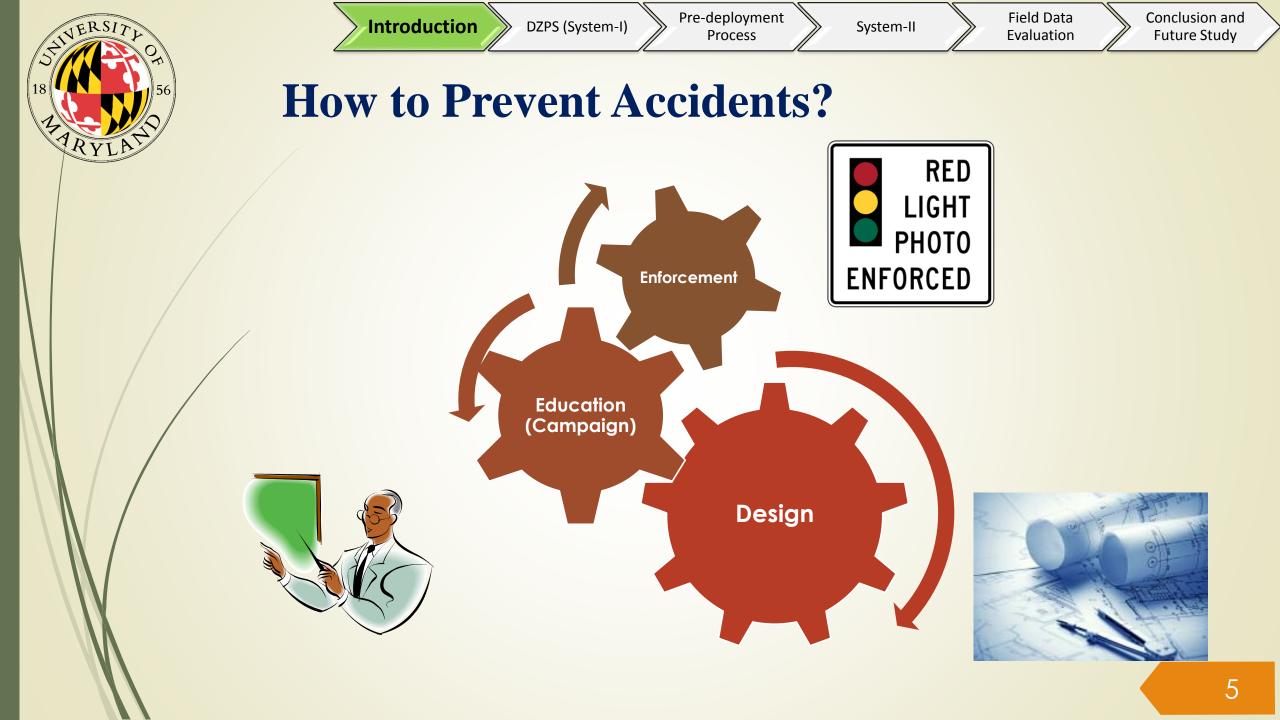
Process

System-II

Introduction

DZPS (System-I)

Potential contributors to Dilemma Zone related accidents


Field Data

Evaluation

Conclusion and

Future Study

- Insufficient duration of the yellow phase
- Aggressiveness of drivers
 - High speed
- Short sight distance
- Driver's characteristics
 - PRT, age, gender
- Deceleration rate of vehicles

Challenges from the Design Perspective

How to improve intersection safety from both preventive and reactive perspectives to minimize both rear-end collisions and side-angle crashes?

- How to consider the tradeoff between intersection safety and operational efficiency?
- How to best use hardware and software devices for intersection dilemma zone to reduce signal delay and improve progression?

Research Objectives

Design, deploy, and evaluate a dilemma zone protection system for high-speed suburban intersections

- Proactively slow down approaching vehicles
- Reactively prevent side-street vehicles from crashing with red-light running vehicles

Functional Requirements for the DZPS

Provide Real-time traffic information within a monitoring ZONE (tracking each individual vehicle's speed and location)

Pre-deployment

Process

System-II

Field Data

Evaluation

Conclusion and

Future Study

- Identify potential red-light running vehicles
 - Predict a driver's reaction to the yellow phase

DZPS

(System-I)

Introduction

- Extend an all-red phase to identified red-light running vehicles
 - Reactive control strategies to prevent aggressive drivers from side-angle crash
- Provide advanced warning message to approaching vehicles

Proactive control strategies to slowdown speeds of approaching vehicles

PREPARE TO STOP WHEN

FLASHING

Advisory

SPEED

Proposed Key Components of the DZPS

Pre-deployment

Process

Wide-range traffic monitoring sensors

Provide speeds and locations of all vehicles within the monitoring zone

System-II

Field Data

Evaluation

Conclusion and

Future Study

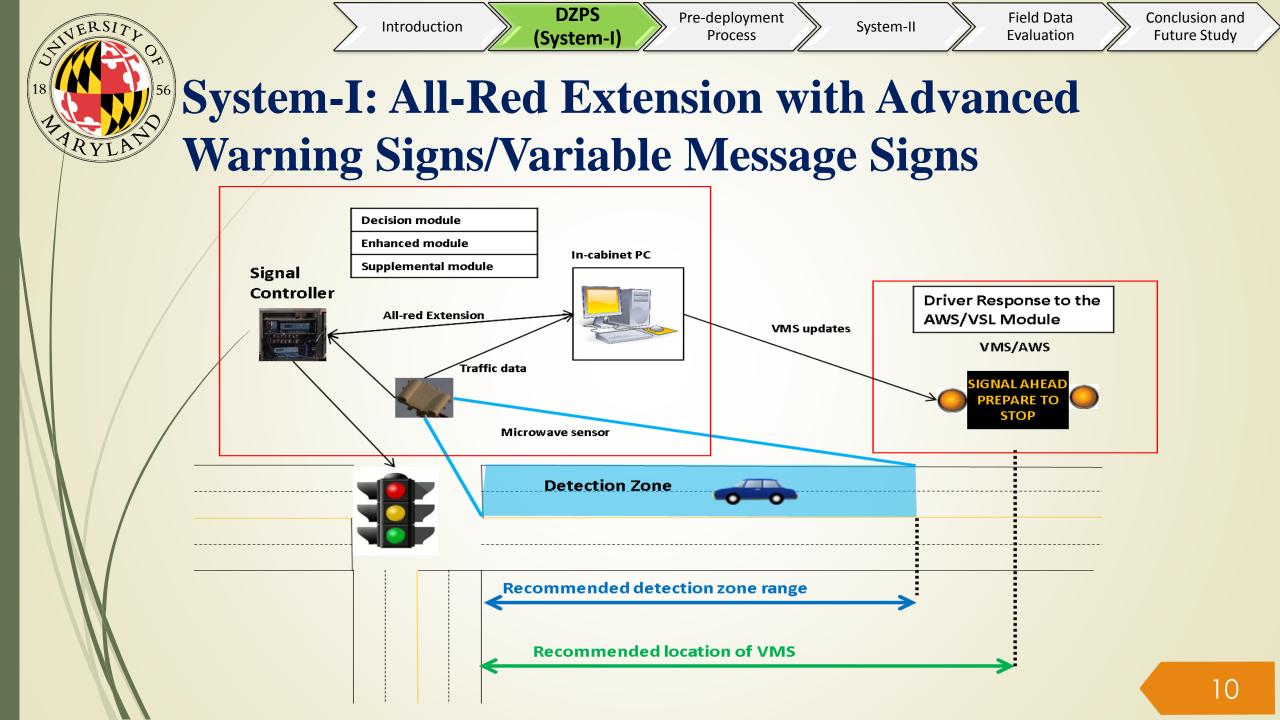
Update the traffic data at the interval of every 0.1 seconds

Signal Controller

Signal Controller with an all-red extension function

In-cabinet Computer

DZPS


(System-I)

Introduction

Receives traffic data from sensors and signal controller to execute allred extension or to activate AWS/VSL

AWS/VSL

Provide information on the signal status or downstream intersection conditions

Key Tasks for the System-I Design

DZPS

(System-I)

Introduction

Develop an all-red extension algorithm

Pre-deployment

Process

System-II

Field Data

Evaluation

Conclusion and

Future Study

Identify potential-red light running vehicles

Pre-deployment analysis

- Develop a simulation platform
- Analyze potential issues
- Evaluate the system performance
- Post-deployment analysis
 - Analyze field data
 - Evaluate system performance

All-Red Extension Algorithm 1 (individual-based)

System-II

Pre-deployment

Process

Field Data

Evaluation

Conclusion and

Future Study

• Step 1

Identify which vehicles are trapped in their respective dilemma zones based on their speeds and locations detected by the deployed wide-range sensors

• Step 2

Calculate the required clearance time for each vehicle trapped in its DZ to pass the intersection

• Step 3

Estimate the probability for vehicles identified in step 1to take the passing decision

• Step 4

Identify vehicles with a passing probability greater than the preset threshold

DZPS

(System-I)

Introduction

• Step 5

Find the maximum required clearance time among all vehicles identified from step 4

• Step 6

Compute the all-red extension based on the maximum clearance time calculated from step 5

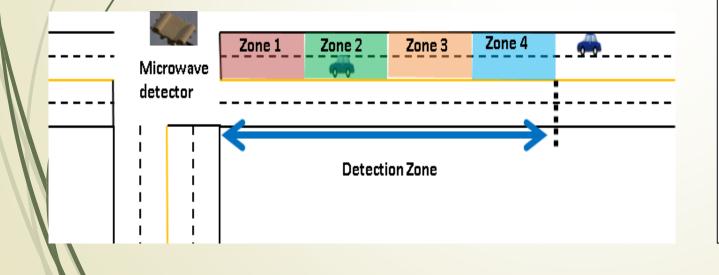
• Step 7

Onset of the red phase, identify vehicles cannot stop safely, and Compare all-red extension duration and update if necessary

All-Red Extension Algorithm 2 (Zone Based)

Pre-deployment

Process


System-II

Compute the optimal duration of all-red extension, from a macroscopic perspective, based on the spatial-temporal evolution of vehicles in the monitoring zone

DZPS

(System-I)

Reduce the potential false alarm rate (unnecessary all-red extension)

Introduction

<Critical relations btw neighboring traffic zones>

The decision of a following vehicle will be affected by the decision of leading vehicles

Field Data

Evaluation

Conclusion and

Future Study

 If 1) vehicles in the leading zone(s) decide to stop at the intersection AND

2) the vehicles travelling on the leading zone(s) occupy both lanes

Then the following vehicles are more likely to select the "stop" decision

Pre-Deployment Assessment

Purpose:

Identify issues prior to the field deployment

Tasks:

- Collect field data
- Develop a simulation platform for experimental analysis
- Validate an all-red extension algorithm
- Identify potential issues

Simulation Platform?

Evaluate the effectiveness prior to the deployment
Identify potential deployment issues
Validate of the developed algorithms
Provide data for experimental analysis
Cost effective

Ensure the success of the deployed DZPS

Challenges for Developing the Simulation Platform

DZPS (System-I)

Introduction

Pre-deployment

Process

- How to replicate the driving behaviors?
- How to implement drivers' responses to the yellow phase in the simulator?

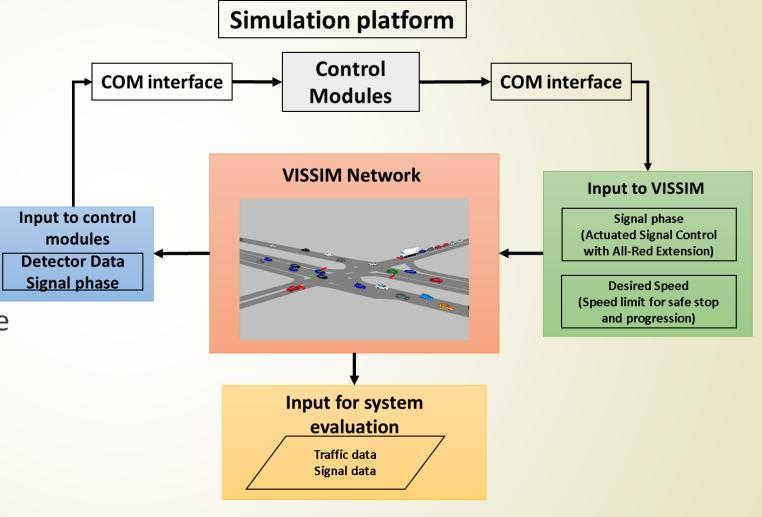
System-II

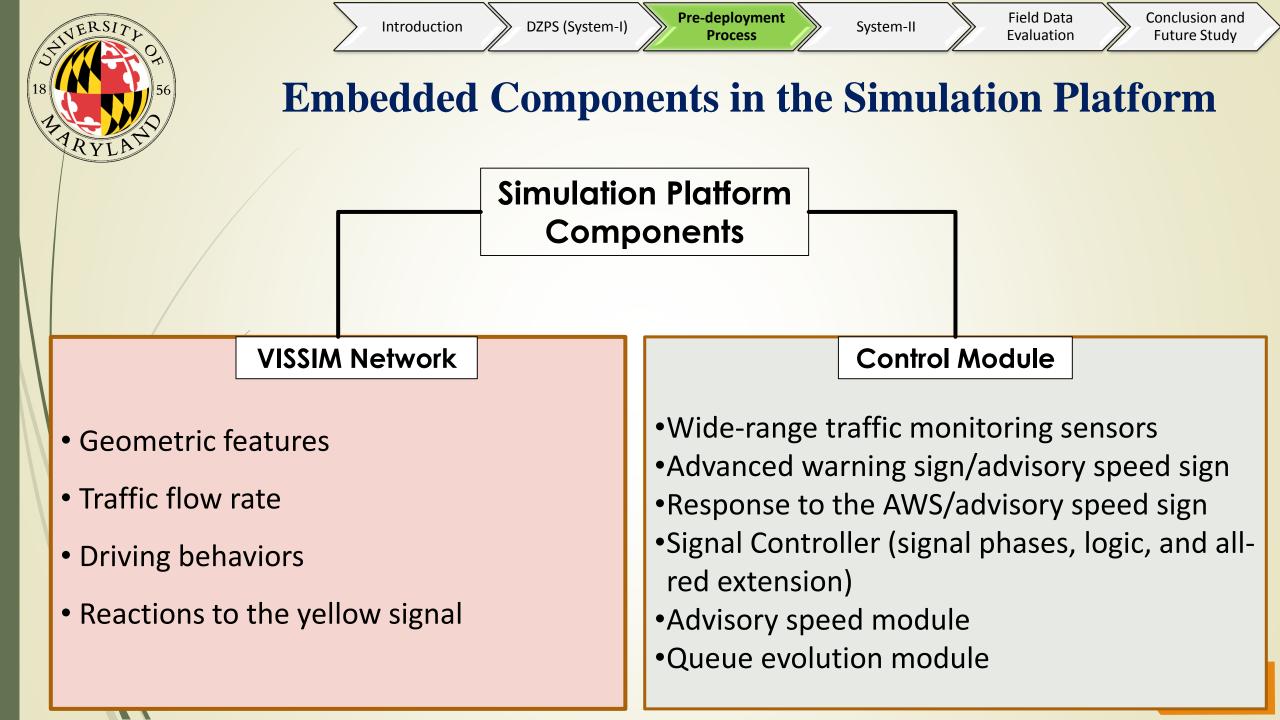
Field Data

Evaluation

Conclusion and

Future Study


- How to replicate the functions of a wide-range traffic monitoring sensor?
- How to simulate the impacts of the VMS/VSL/AWS on drivers?
- How to simulate the operations of an all-red extension?
- How to predict the gap-out timing?


Development of the Simulation Platform

Objectives

- Replicate the real-world traffic distributions and driver characteristics
- Integrate all key components of the proposed system into the simulation platform for experimental analysis
- Evaluate the resulting effectiveness on safety improvement

Data flowchart in the Simulation Platform

Key Calibration Results

DZPS (System-I)

Pre-deployment

Process

System-II

Traffic Characteristics

Introduction

	Field	Simulation		
Speed @ 1050 ft (mph)	57.4 (9.7)	59.68 (7.5)		
Speed @ 650 ft (mph)	39.9 (8.2)	41.8 (8.1)		
Speed @ 400 ft (mph)	38.6 (11.4)	42 (9.4)		
Speed @ 200 ft (mph)	31.3 (14.5)	32.8 (14.2)		
Deceleration rate (ft/s ²) Passenger car / truck	-9.3(3.5)/- 7.5(2.12)	-9.7(5.4)		
Acceleration rate (ft/s ²) Passenger car / truck	3.6(3.1)/3.5(2.4)	3.05(2.6)		

Simulator has been calibrated with field data

Field Data

Evaluation

Conclusion and

Future Study

Spatial distribution of Speeds

Acceleration/Deceleration rates

Introduction DZPS (System-I) Pre-deployment Process System-II Field Data Evaluation Future Study

Calibration Results

Driver Responses to the Yellow Phase

< The Percentage of Drivers Taking the "Pass" Decision During a Yellow Phase>

	Location of vehicle from stop line onset of yellow									
Speed of vehicle	0 - 100 ft 10		100 -	200 ft	200 - 300 ft		300 - 400 ft		400 - 500 ft	
on set of yellow	Field	Final	Field	Final	Field	Final	Field	Final	Field	Final
30-40 mph	100%	100%	86%	61%	21%	21%	2%	0%	0%	0%
40-50 mph	100%	100%	100%	93%	74%	76%	50%	26%	20%	8%
50-60 mph	100%	100%	100%	100%	88%	80%	50%	48%	0%	21%

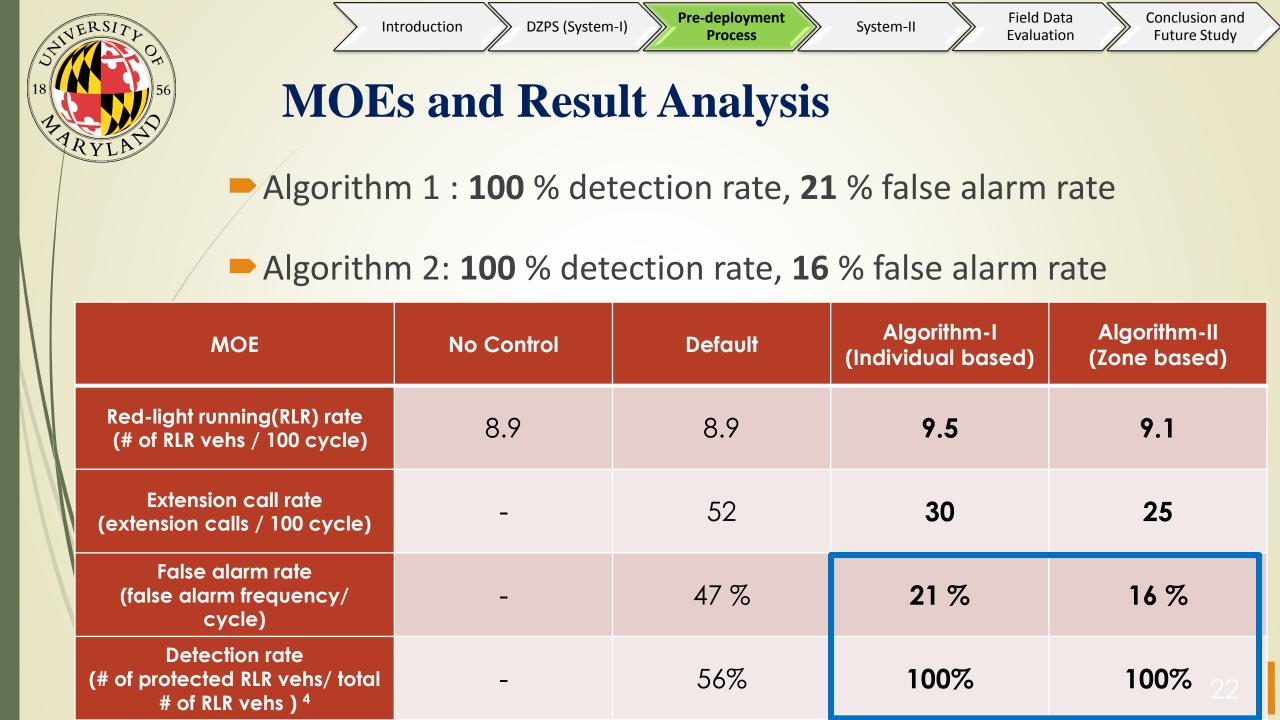
- Driver responses are close to the field observations
 - 100-400 feet
 - 40-60 mph

Simulation Scenarios

Base scenario: No DZPS

Base line for comparing the performance of different DZPS algorithms

Scenario 1: Base algorithm


Divide the detection zone into two zones

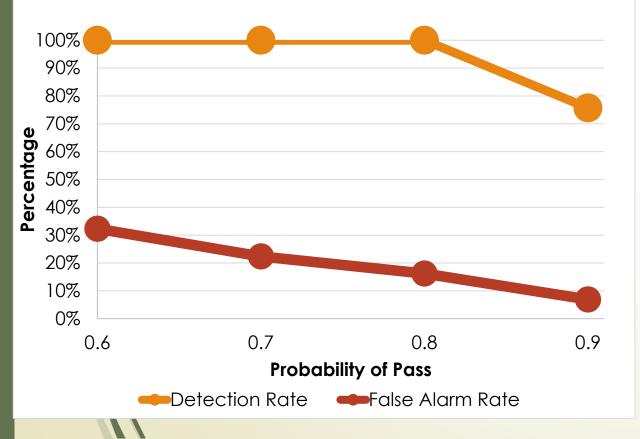
If a vehicle running at the speed greater than 27 mph in the first zone or a vehicle running at the speed greater than 56 mph in the second zone is detected during the all-red phase, then extend the all-red phase.

Scenario 2: The Proposed Algorithm-1 (Individual based)

Scenario 3: The Proposed Algorithm-2 (Zone based)

*Each scenario has been simulated 40 hours of simulation

Sensitivity Analysis (False Alarm Rate and Detection Rate)


DZPS (System-I)

Pre-deployment

Process

Trade-off between detection rate and false alarm rate (P= 0.6,0.7,0.8,0.9)*

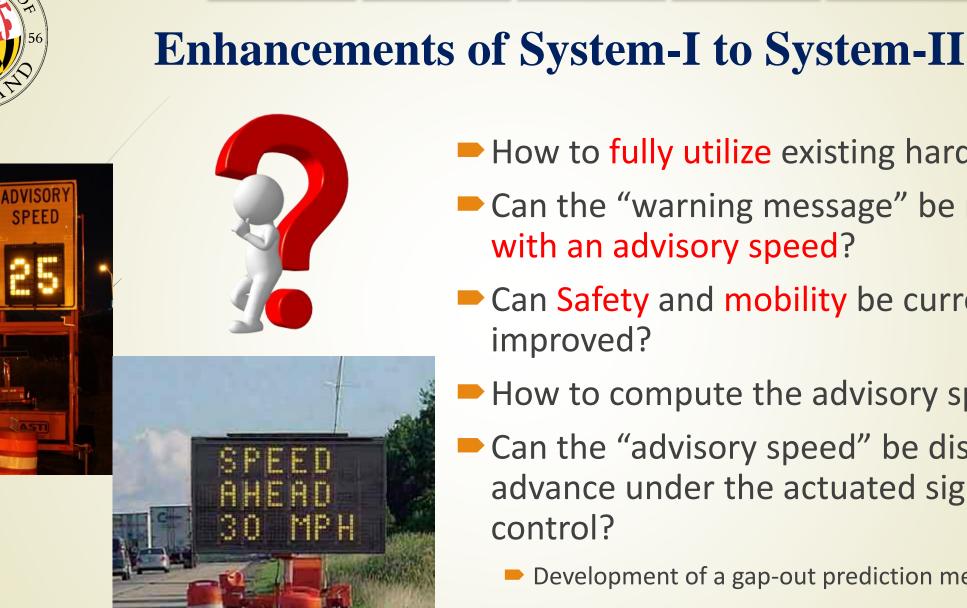
Introduction

Trade off between the false alarm and detection rates

System-II

Field Data

Evaluation


Conclusion and

Future Study

- Intersection safety is the main objective
 - P = 0.8 (probability)
 - Detection rate 100%
 - False alarm rate 16%

SPEED

Introduction

How to fully utilize existing hardware?

System-II

Pre-deployment

Process

DZPS (System-I)

Can the "warning message" be replaced with an advisory speed?

Field Data

Evaluation

Conclusion and

Future Study

- Can Safety and mobility be currently improved?
- How to compute the advisory speed?
- Can the "advisory speed" be displayed in advance under the actuated signal control?
 - Development of a gap-out prediction methodology

System-II: An Integrated Intersection Control System for Both Safety and Operational Efficiency

DZPS (System-I)

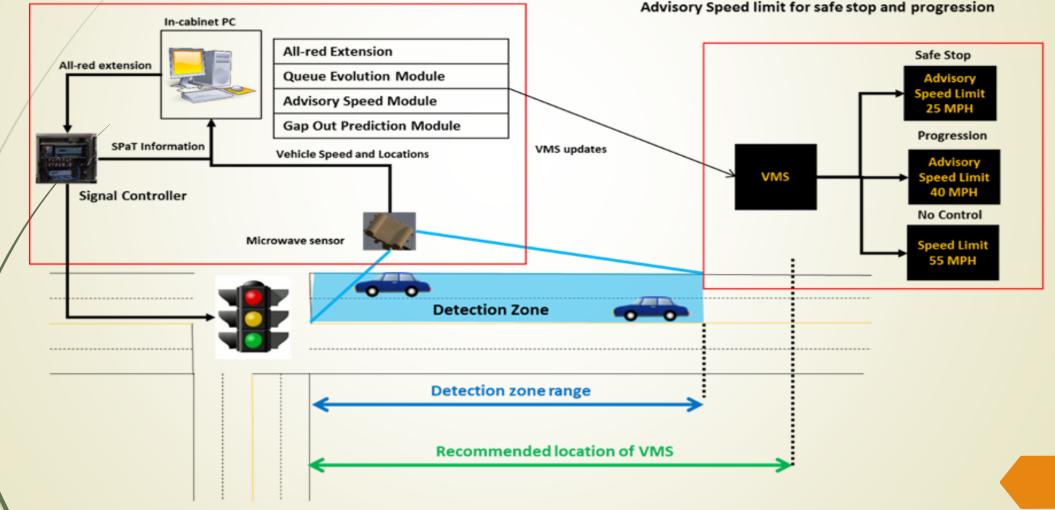
Pre-deployment

Process

Field Data

Evaluation

System-II


Conclusion and

Future Study

25

All-red extension for red light running vehicle to clear the intersection

Introduction

DZPS (System-I)

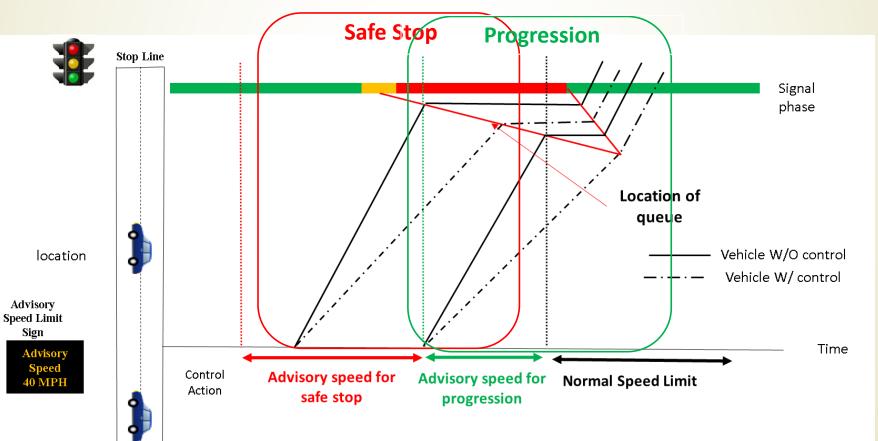
Provide advisory speed for:

Introduction

- Safe stop to vehicles during the yellow and red phase
- Progression to vehicles at the end of the red phase or beginning of a green phase

Pre-deployment

Process

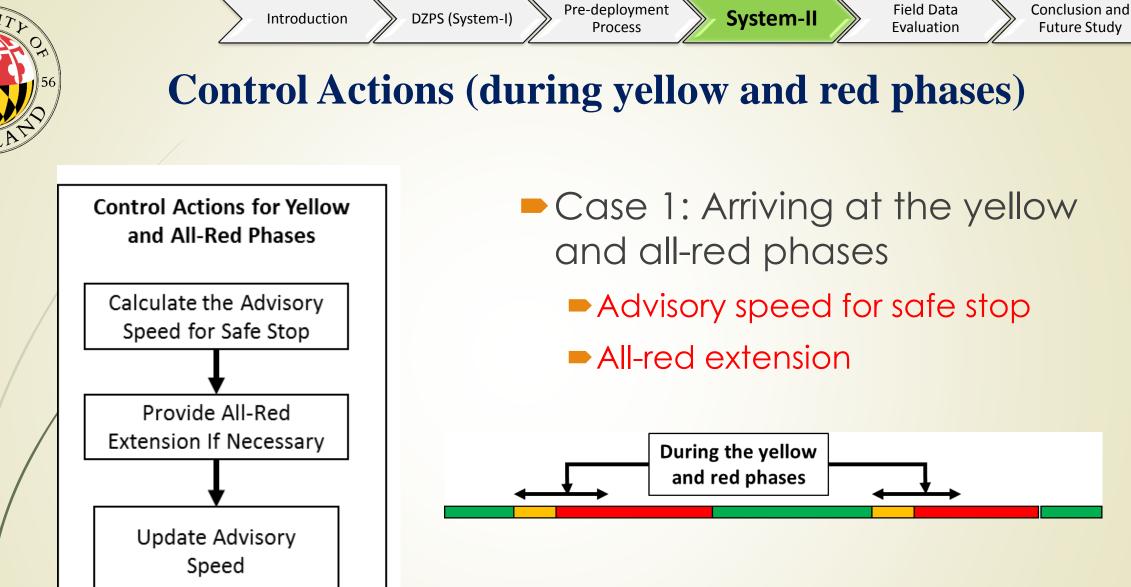

Field Data

Evaluation

System-II

Conclusion and

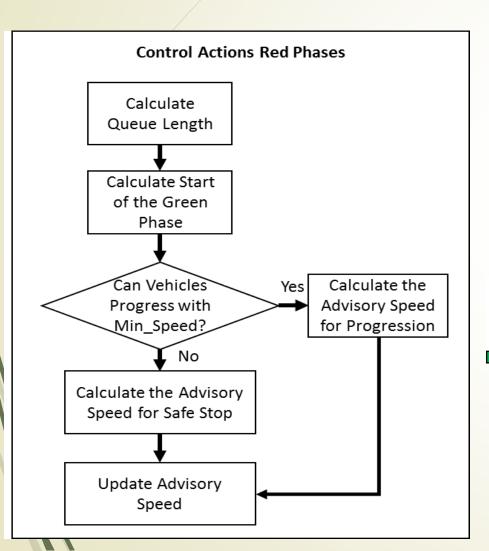
Future Study

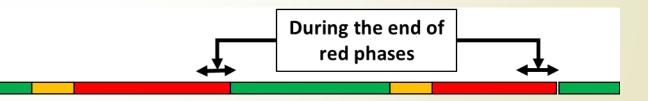

Introduction DZPS (System-I) Pre-deployment Process System-II Field Data Evaluation Future Study

Gap-out Prediction Strategies

- To estimate the gap-out timing for an actuated signal control
- To provide advisory speeds for vehicles either arriving at the start or the end of the green (progression and safe stop)

- Step 1
 - Calculate the Avg acceleration rate
 - Calculate the current trajectory
- Step 2
 - Check for potential conflicts with the leading vehicle
- Step 3
 - Estimated the ETA time
- Step 4
 - Determine the green termination time by compared with a min green and a max green

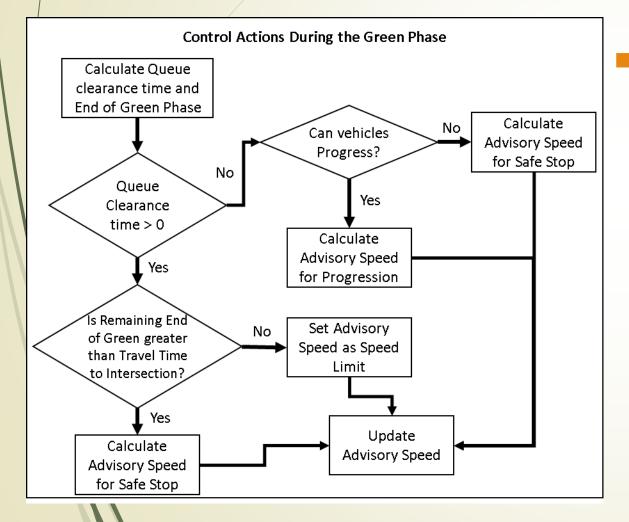




Introduction DZPS (System-I) Pre-deployment Process System-II Field Data Evaluation Future Study

Control Actions (during yellow and red phases)

Case 2: Arriving at the end of a red phase
Advisory speed for progression


Control Actions (during green phases)

DZPS (System-I)

Introduction

Pre-deployment

Process

Case 1: Arriving at the beginning of a green phase and encounter the stop queue

Field Data

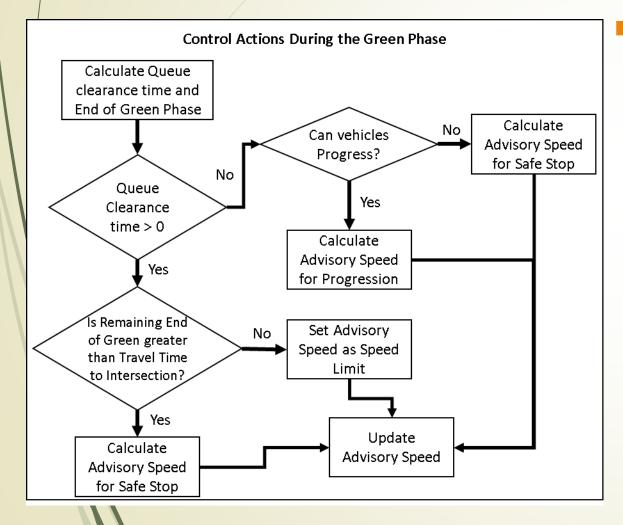

Evaluation

Conclusion and

Future Study

Advisory speed for progression

System-II


Control Actions (during green phases)

DZPS (System-I)

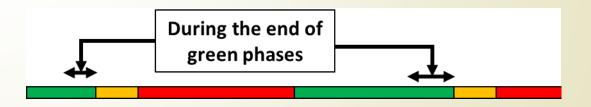
Introduction

Pre-deployment

Process

Case 2: : Arriving at the end of a green phase and encounter the yellow and red phases

Field Data


Evaluation

Conclusion and

Future Study

Advisory speed for safe stop

System-II

Experimental Scenarios for simulation analysis

Pre-deployment

Process

Field Data

Evaluation

System-II

Conclusion and

Future Study

Base scenario:

Without any proactive/reactive protection system

DZPS (System-I)

Scenario 1: System-I only

Introduction

Scenario 2: System-II

- Scenario 2-1: Set the driver compliance rate to 100%.
- Scenario 2-2: Set the driver compliance rate to 50%.
- Scenario 2-3: Set the driver compliance rate to 25%.

Result Analysis

MOEs for Safety:

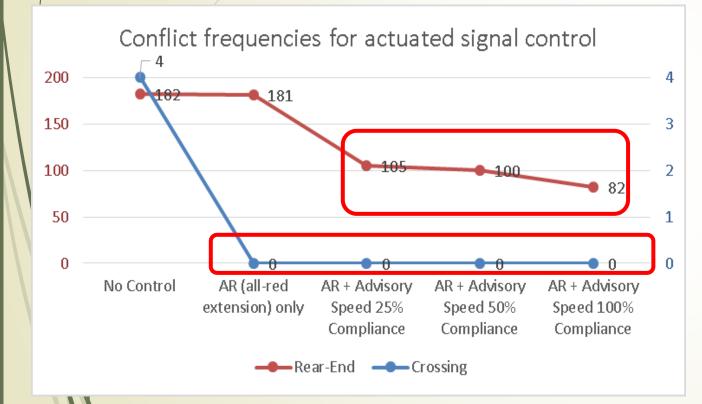
- Average number of hard-braking vehicles per cycle
- Total number of vehicles in dilemma zones
- The average number of red-light running vehicles per cycle (RLR / cycle)
 - Detection rate for red-light running vehicles

Scenarios MOEs		Base Case	All-Red Extension Only	All-Red Extension and Advisory Speed (System-II)			
			(System-I)	100% compliance	50% compliance	25% compliance	
	Average number of hard-braking vehicles per cycle	0.66 (0.76)	0.66 (0.77)	0.15 (0.18)	0.24 (0.21)	0.29 (0.26)	
Cofoty	Total number of vehicles in dilemma zone	892 (792)	862 (770)	540 (525)	702 (596)	790 (622)	
Safety	The average number of red-light running vehicles per cycle (RLR / cycle)	0.11 (0.094)	0.11 (0.097)	0.06 (0.064)	0.08 (0.08)	0.09 (0.087)	
	Detection rate for red-light running vehicles	-(-)	100% (100%)	100% (100%)	100% (100%)	100% (100%)	

Result Analysis

- MOEs for Mobility:
 - The average number of stops per cycle
 - The total stopped delay per cycle
 - The fuel consumption
 - The false alarm rate for the all-red extension protection

		Scenarios	Base Case	All-Red Extension Only (System-I)	All-Red Extension and Advisory Speed (System-II)			
	N	MOEs			100% compliance	50% compliance	25% compliance	
V		Average number of stops per cycle	6.4 (6.4)	6.5 (6)	4.2 (4.5)	4.5 (5.1)	4.6 (6.89)	
	Mobility	Average stopped delay for all vehicles per cycle (second)	45.7 (76)	48.6 (77)	38.0 (54)	40.5 (59)	42.1 (63)	
		Average fuel consumption per cycle (Gallon)	0.239 (0.24)	0.226 (0.022)	0.13 (0.14)	0.16 (0.15)	0.167 (0.17)	
		False alarm rate for the all-red extension	- (-)	14% (16%)	5% (4%)	10% (7%)	12% (7%)	



Further Analysis on Safety - **Conflict Frequency Analysis**

DZPS (System-I)

Pre-deployment

Process

Introduction

- SSAM (Surrogate Safety Assessment Model)
 - Based on the simulation vehicle data

Field Data

Evaluation

Conclusion and

Future Study

Side-angle, rear-end conflicts

System-II

- Potential side-angle crashes are eliminated
- Potential rear-end crashes are reduced with an advisory sign

Post-Deployment Evaluation for System-I

DZPS (System-I)

Introduction

Pre-deployment

Process

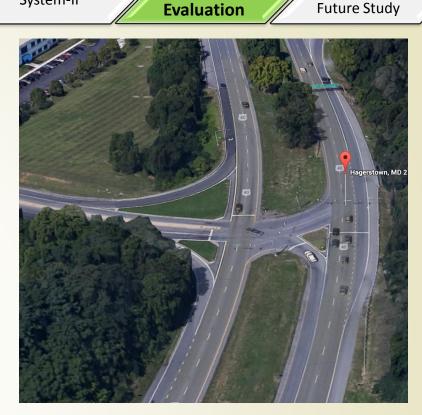
System-II

Field Data

Evaluation

Conclusion and

Future Study


US 40@ Western Maryland Parkway

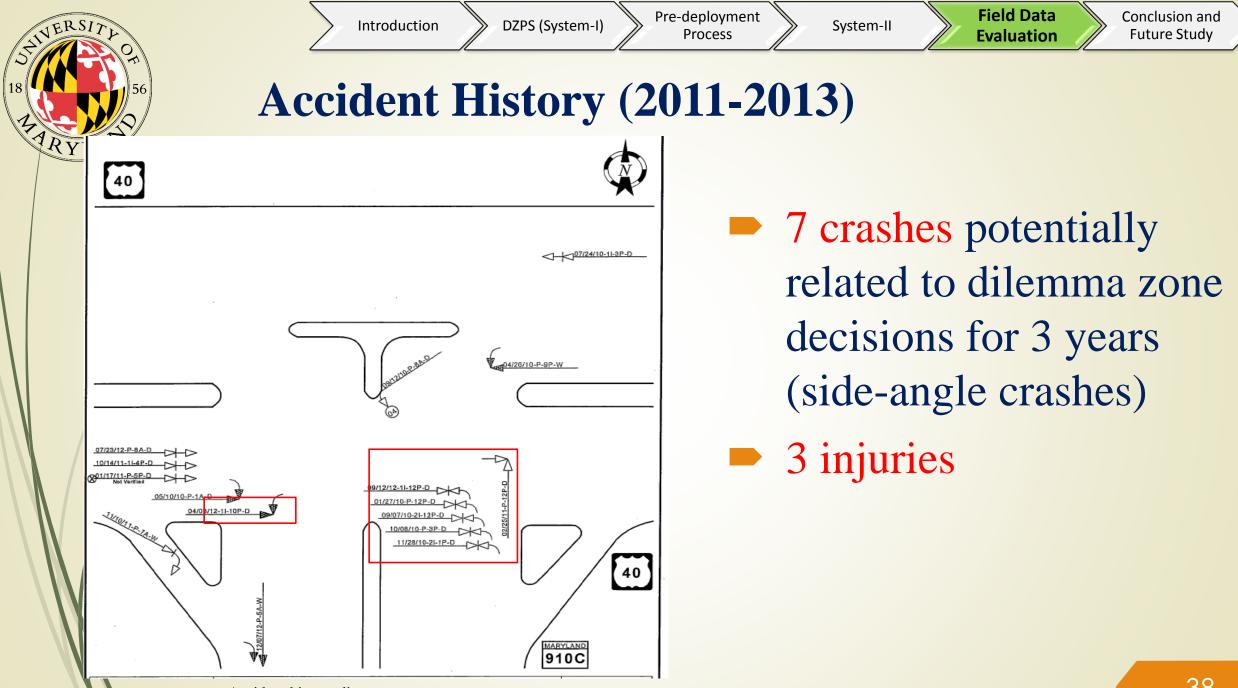
Introduction

4 -lanes divided highway (US 40), 3 approach lanes for Western Maryland Parkway (2-left, 1-right)

DZPS (System-I)

- **Isolated intersection**
- **55 mph speed limit**
- Ramp from I-81 for eastbound
- 5% HV

Field Data



System-II

Pre-deployment

Process

Conclusion and Future Study

Field Data Collection (before deployment)

DZPS (System-I)

Pre-deployment

Process

Introduction

900 ft video capture

3 video camcorders : 900 ft, 500 ft, and 200ft

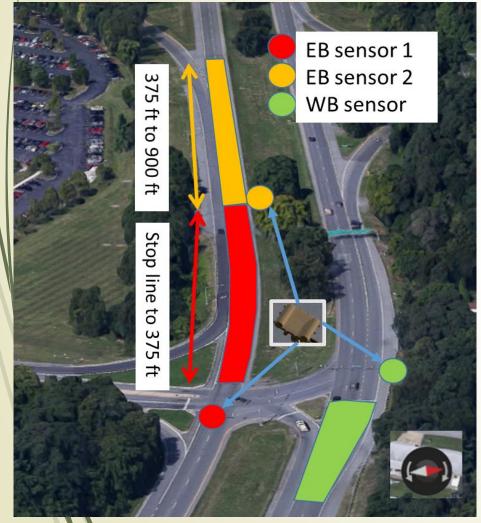
System-II

Field Data

Evaluation

Conclusion and

Future Study


- I camcorder for monitoring the stop line and the signal
- Data Collection Period: Oct 10th 2014
- Data Processing
 - Spatial distribution of speeds
 - Driver's decision at the onset of the yellow phase

signal video capture

Field Deployment of the System

Two sensors on EB on US 40 **EB** sensor1: Green Extension, All-red Extension **EB** sensor 2: All-red Extension • One sensor on WB on US 40 **WB** sensor:

Green Extension

Introduction DZPS (System-I) Pre-deployment Process System-II Field Data Conclusion and Future Study

Key deployment Activities

- Check the sensor's functions
 - Validate the speed and location of approaching vehicles with sensor data
 - Checked whether or not the sensor sending proper calls to the signal controller
- Using camcorders record to measure signal timings
- Identify if there are all-red extension calls from the recorded video
- Identify red-light running vehicles
- Compare all-red extensions and red-light running vehicles to identify missed calls, false alarm, and correct calls

Field Data Collection after Deployment

DZPS (System-I)

Pre-deployment

Process

Introduction

Date	Time	Veh ID	Speed	Location	Signal
10/14/2016	57:56.5	28168	49	465	Green
10/14/2016	57:56.7	28168	49	455	Yellow
10/14/2016	57:56.9	28168	49	445	Yellow
10/14/2016	57:57.0	28168	49	430	Yellow
10/14/2016	57:57.2	28168	49	420	Yellow

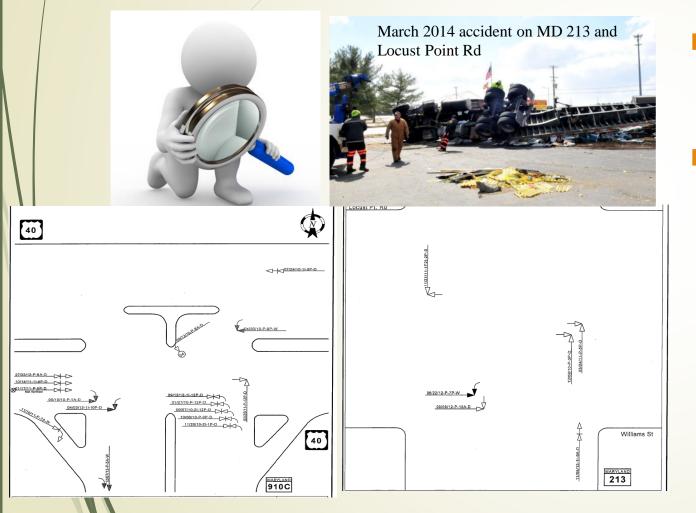
10/14/2016	58:01.5	28168	46	120	Yellow
10/14/2016	58:01.7	28168	46	115	Red
10/14/2016	58:01.8	28168	46	105	Red
10/14/2016	58:02.0	28168	46	90	Red
10/14/2016	58:02.2	28168	45	80	Red

Signal timings (camcorders)

System-II

Field Data

Evaluation


Conclusion and

- Traffic speeds and locations (sensors)
- Decisions of drivers during the yellow phase
- System's performance

Evaluation of the Short-Term Impacts

DZPS (System-I)

Introduction

Due to the Stochastic nature of accidents

System-II

Purposes:

Pre-deployment

Process

To evaluate the effectiveness of the system's

Field Data

Evaluation

Conclusion and

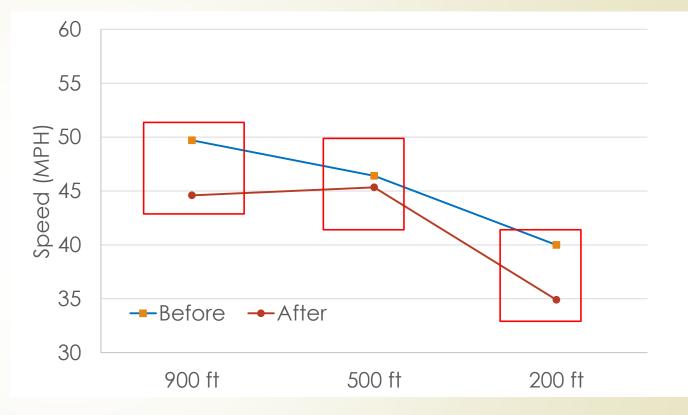
- Impacts on driver behaviors and traffic conditions
- The performance of DZPS with respect to preventing side-angle accidents.

Impacts by the Roadside Sensors?

Impacts on the traffic?

- Change in the Speed?
- Change in acceleration/deceleration rates?
- Change on decisions of drivers during the yellow phase?

Impacts on Traffic Flow Speed


Introduction

DZPS (System-I)

Pre-deployment

Process

- Average speed reduced at 900 feet and 200 feet
- Not very significant reduction at 500 feet

System-II

Field Data

Evaluation

Conclusion and

Location		900 ft	500 ft	200 ft
Ave Sed	Before	49.7	46.4	40
Avg Spd	After	44.6	45.33	34.9

Impacts on Traffic Flow Speed

DZPS (System-I)

Introduction

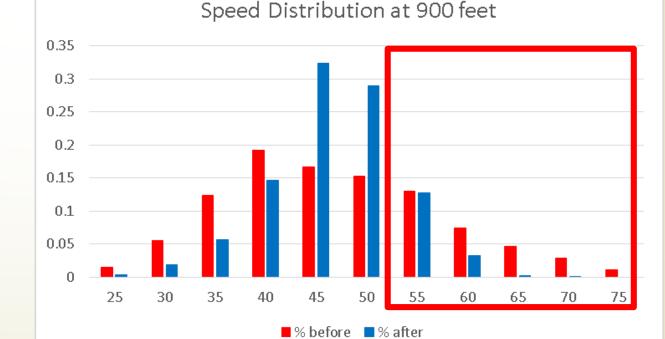
Pre-deployment

Process

C 1	Bef	fore	Af	ter					
Speed	Frequncy	Percentage	Frequncy	Percentage					
75	14	1%	0	0%					
70	36	3%	3	0%					
65	58	5%	6	0%					
60	92	7%	94	3%					
55*	160	13%	375	13%					
50	189	15%	850	29%					
45	206	17%	951	32%					
40	236	19%	432	15%					
35	153	12%	166	6%					
30	68	6%	56	2%					
25	19	2%	10	0%					
Total	1231	100%	2943	100%					
	* Speed limit: 55 MPH								

 Percentage of the high-speed drivers (above speed limit at 900 feet) reduced from 29 % to 16%

System-II


Field Data

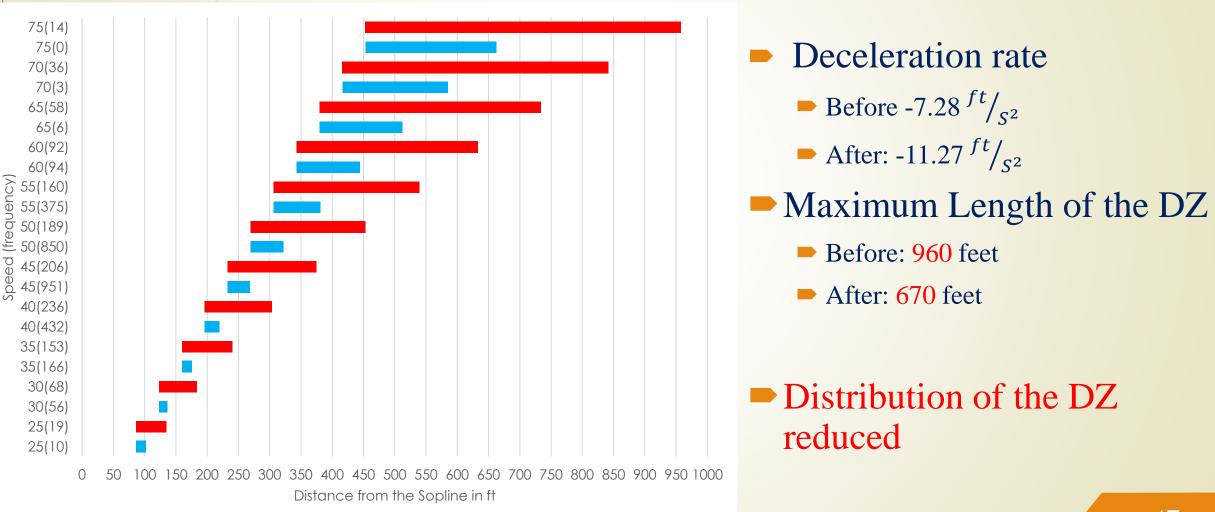
Evaluation

Conclusion and

Future Study

Vehicles mostly choose to slow down when approaching the intersection

DZPS (System-I)


Introduction

Pre-deployment

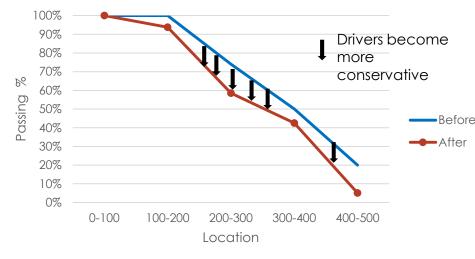
System-II

Field Data

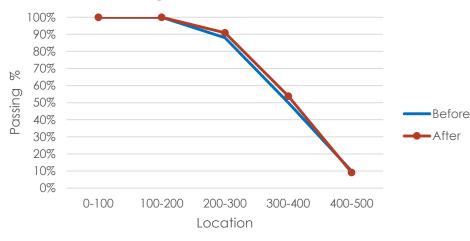
Conclusion and

Drivers' Decisions During the Yellow Phase

DZPS (System-I)


) (100) (32)

Pre-deployment


Process

Moderate Speed (45-55 MPH)

Introduction

High Speed (55+ MPH)

More drivers at moderate speeds choose "STOP" decisions (below of vehicles from the stop line at the onset of a yellow phase

System-II

Field Data

Evaluation

Conclusion and

Future Study

	100 -	200 ft	2 N O	₹®ig1	naffica	the fr	npac	t ðn	high-speed
er	Before	After	Beebre	VERS	Before	After	Before	After	
%	100%	94%	74%	59%	50%	43%	20%	5%	

(73) (41) (24)

Speed of	Loca	Location of vehicles from the stop line at the onset of a yellow phase								
vehicle on set of yellow	0 - 10	00 ft	100 -	200 ft	200 -	300 ft	300 -	400 ft	400+ ft Befor After 20% 5% (5) (59) 10% 9%	+ ft
(sample size)	Before	After	Befor e	After	Befor e	After	Befor e	After		After
45 - 55 mph	100% (78)	100% (24)	100% (100)	94% (32)	74% (73)	59% (41)	50% (24)	43% (40)		5% (59)
55+ mph	100% (9)	100% (7)	100% (20)	100% (9)	88% (47)	91% (22)	50% (16)	54% (13)	10% (20)	9% (44)

(40)

(5)

(59)

	The second second	Introduction Performance Detection a	ce Evalua	
	MOE	Simulation	Field Operation*	phases
	Detection rate (protected RLR)	100%	100%	System provides all-red extension to all such
	False alarm rate (false alarm / 100 cycle)	21	30	vehicles
L				■ 100% detection rate

► 30% false alarm rate

DZPS (System-I) Introduction System-II Process **Evaluation Future Study Summary of Findings from Field Evaluation**

Pre-deployment

Field Data

Conclusion and

Deployed DZPS can

- Reduce the average approaching vehicle speed
- Reduce the percentage of high-speed vehicles
- Reduce the range of dilemma zones
- Encourage drivers to take the "stop" action during the yellow phase
- High-Speed vehicles
 - Are more likely to be reduced
 - Side-street vehicles are protected by all-red extensions

Additional Findings from Design and Deployment of DZPS

DZPS (System-I)

Introduction

 A function to track each individual vehicle's speed and location (Wide-range traffic monitoring sensor) over a monitoring zone is the essential input for the proposed system's computing module

Pre-deployment

Process

System-II

Field Data

Evaluation

Conclusion and

- Design of intersection safety issue should be based on behaviors of driving population
- Field observations are essential for understanding key factors contributing to accidents
- A set of robust behavior models are needed for predicting driver behaviors

Additional Findings from Design and Deployment of DZPS

DZPS (System-I)

Introduction

The behavior of aggressive drivers is unlikely to change significantly from the roadside sensor or AWS– justify the need of a reactive control

Pre-deployment

Process

System-II

Field Data

Evaluation

Conclusion and

- To ensure the success of a system and to identify any potential issues, it is beneficial to have a well-calibrated traffic simulator
- A well-designed all-red extension algorithm can effectively predict red-light running vehicles to prevent potential sidecrashing accidents
- Enhancement of the DZPS for all-red extension to speed harmonization can be implemented with minimal additional hardware

Additional Findings from Design and Deployment of DZPS

DZPS (System-I)

Introduction

An integrated system can improve both intersection safety and mobility

Pre-deployment

Process

System-II

Field Data

Evaluation

Conclusion and

- Effective monitoring of the evolution of intersection traffic queues and gap-out timing are critical input for computing advisory speed
- Proper display of the VMS/VSL can effectively reduce the number of vehicles trapped in the dilemma zone and thereby reduce number of rear-end and side-angle crashes
- A higher compliance rate under the displayed message/advisory speed will often result in a safer and more efficient traffic environment

	Introduction	DZPS (System-I)	Pre-deployment Process	System-II	Field Data Evaluation	Conclusion and Future Study
--	--------------	-----------------	---------------------------	-----------	--------------------------	--------------------------------

Future Studies

Impacts of the VMS and AWS on driver behaviors

Additional in-depth analysis and development of behavior models to reflect the discrepancies of driver behaviors under different VMS and AWS

Integration of the system with connected vehicles

- Integrate the proposed DZPS under different penetration rates of connected vehicles so as to improve the reliability of the system's operational functions
- More field studies on the impacts of roadside sensors on the driving behaviors
 - The impact of roadside sensor may vary with different driving populations

Future Studies

- Development of an intersection safety evaluation function
 - To promote the deployment of proposed systems from the cost/benefit perspective
 - A reliable function with critical data associated with accidents to facilitate short-term performance analyses

Long-term analysis on safety

 The learning impacts (i.e., any changes on short-term impact) of driving populations over time with respect to the roadside sensors or any deployed system deserve further understanding with more field studies.

Questions and Comments?

Thank You

