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Abstract: Both patrolling and prepositioned strategies for allocating emergency traffic response units have been implemented in practice. To
compare the performance of both response strategies, this study has conducted an efficiency comparison based on the field data from the
I-495/I-95 Capital Beltway. The extensive experimental results have revealed that the effectiveness of those response strategies varies with
some critical factors, including the spatial distribution of incident frequency over different times of a day, the fleet size of the response team,
the congestion level, and the available detection sources. In view of the resource constraints, the study has further presented a methodology to
determine the most cost-beneficial fleet size operated with the proposed strategies, considering the marginal cost and the benefit of an addi-
tional response unit on the resulting total social benefits. The analysis results with the data from the Capital Beltway could serve as the basis
for highway agencies to review and optimize their incident response and management program. DOI: 10.1061/(ASCE)TE.1943-5436
.0000670. © 2014 American Society of Civil Engineers.
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Introduction

Traffic incidents have become a major cause of congestion and a
significant threat to urban mobility. The Federal Highway
Administration (FHWA) (2005) found that approximately 25%
of congestion in the United States is incident related. According
to the latest Urban Mobility Report (Schrank et al. 2011) by the
Texas Transportation Institute (TTI), traffic incidents are estimated
to account for approximately 52–58% of the total delays experi-
enced by motorists in all urban areas.

An effective incident management system not only helps to
mitigate congestion through swift incident detection, response,
and site clearance, but also generates significant environmental
benefits by reducing fuel consumption, emissions, and potential
secondary incidents. The importance of incident response manage-
ment systems has been well recognized among traffic management
agencies. As reported in a recent study (Schrank et al. 2011), 13 of
the total 15 large metropolitan areas and 30 out of the total 32
medium urban areas list incident management systems as one
key solution to mitigate traffic congestion. However, how to

maximize the incident management efficiency under available
resource constraints remains a critical issue.

Most incident response strategies proposed in the literature can
be classified into two categories: dispatching and patrolling
systems. Some researchers (Skabardonis et al. 1998; Lou et al.
2010) investigated the freeway service patrols (FSP) program,
under which incident response units will constantly roam on free-
ways to detect and respond to traffic incidents. The key question for
such a system is how to divide a traffic network into independent
patrol segments and how to assign response units to them. Some
previous studies have addressed this problem either analytically
(Pal and Sinha 1997) or through simulation (Pal and Sinha
2002; Ozbay and Bartin 2003). In contrast, Larson and Odoni
(1981) and Pal and Bose (2009) argued that it is more efficient
to deploy response units strategically and dispatch them after an
incident has been detected. This system is more suitable to areas
where traffic surveillance and incident detection are available,
and the key question for such strategies is how to deploy and dis-
patch available response units so as to minimize the response time.
Early studies along this direction include the p-median problem
first introduced by Hakimi (1964) and the maximal coverage loca-
tion problem (MCLP) proposed by Church and ReVelle (1974).
Both paradigms of response strategies have their advantages in
practice, depending on the incident locations and some operational
constraints. The optimal design for incident response units may
vary over different time periods (peak versus nonpeak) and with
available resources.

Another challenge for designing and deploying incident man-
agement systems is the stochastic nature of incidents. In practice,
two incidents may happen concurrently, and the response unit at the
nearest depot location may not be available. Therefore, a back-up
strategy must be available, and the associated cost must be consid-
ered in the system design. For example, Sherali and Subramanian
(1999) introduced a new term in their objective function to
represent the opportunity cost related to loss of coverage when a
response team is busy. Geroliminis et al. (2009) extended the
hypercube queuing model to generate optimal strategies in a
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dispatching system while considering the availability of a response
unit. Another type of uncertainty is because of the variance of
incident rates. Historical data of incident frequency usually exhibit
a significant variance. Many existing models are built based on his-
torical data and adopt the minimal expected response time as the
design objective. Those models may perform well most of the time,
but generate excessively long response times in some cases. In
practice, traffic management agencies may be willing to sacrifice
some savings on average response time, but to constrain the total
response time in those worst cases in an acceptable range. However,
such constraints are not adequately considered in existing systems.

In a previous study, Zhu et al. (2012) empirically compared the
performance of the optimal incident response unit location/
allocation strategy based on the p-median model with three
experience-based strategies: (1) allocating available response units
near high-frequency incident locations; (2) distributing them evenly
over the entire coverage area; and (3) positioning standing-by units
at the traffic operation center (TOC). However, all of these strate-
gies preposition emergency response units and dispatch them if an
incident is detected. Moreover, previous work by Zhu et al. (2012)
did not consider the stochastic nature of incidents and the
likelihood of having multiple incidents, which compromises its
applicability and transferability to different regions.

Many states, such as Maryland, do not have a well-established
guidance on how incident response units should be operated, and
each traffic operation center decides their own rules based on
engineering judgment. There have been very few empirical studies
in literature on whether the patrolling or the prepositioned strategies
perform better under various traffic and incident conditions.
A systematic approach is needed to take advantage of the growing
field data and empirically evaluate the performance of these two
strategies. To bridge this gap, this paper extends this framework
and compares the performance of patrolling systems with
prepositioning/dispatching strategies. To ensure the effectiveness
of the proposed model, the system performance during different
time periods and under different resource constraints will be
compared with data collected from 2006–2010 on the I-495 belt-
way in the state of Maryland. The potential impact of the variance
of incident frequency has also been evaluated to ensure fair
comparison. Findings from this research may help incident
management agencies such as the Coordinated Highway Action
Response Team (CHART) in Maryland to better design their
response system and to adapt their response strategies within the
resource constraints. The next section will present the dispatching
model, followed by a discussion of data used in this study.

Performance of different incident response systems will then be
discussed, along with a benefit/cost analysis.

Incident Response Models

This study considers two types of incident response systems: (1) al-
locating available response units strategically at several depots and
dispatching them optimally if an incident has been detected; and
(2) dividing the network into patrol beats and allocating response
units to patrol constantly, detect, and respond to incidents.

Dispatching Model

To be consistent with previous research in the literature, this study
considers the scenario of I freeway segments to be served by no
more than P emergency response units (constrained by available
resources), which will be located at J potential sites for response
units. The variable M is the set of location sites to house the
response units; thus, M ⊆ J. In general, the system takes the
following variables as inputs: tij, travel cost from location j to seg-
ment i; and λi, the average accident rate on freeway segment
i during a given time period.

Both the incident and the emergency response unit should sit-
uate at one specific location on a freeway segment. To be consistent
with previous literature, this study assumes that they all locate at the
middle point of the corresponding segments. In practice, a segment
is defined as one freeway section between two exits and with its
length varying from 1.61–3.32 km (1–2 mi). Therefore, this sim-
plification should not significantly impact the results.

This study assumes that incident frequency follows a Poisson
distribution, as widely used in existing studies. Examples include
those by Kweon and Kockelman (2003), Skabardonis et al. (1997),
and Ma et al. (2008). Researchers (Lord and Mannering 2010) have
also raised concerns on the use of a Poisson distribution, such as
overdispersion and excessive zero counts, and more advanced stat-
istical tools (e.g., zero-inflated Poisson) were proposed to address
some of these concerns. However, Lord et al. (2005) argued that the
fundamental incident process indeed follows Poisson trials by
nature, and some of the concerns are because of “inappropriate
selection of time/space scales.” Because no consensus is reached
in the literature, an empirical test was conducted to evaluate the
incident frequency distribution.

This study used incident data on the Capital Beltway in
Maryland from 2006–2008. Fig. 1 provides an example of this
incident data by comparing the empirical and theoretical incident

Fig. 1. Distribution of incident occurrences on exit 38 on I-495 during a.m. peak hours
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distribution for exit 38 during a.m. peak hours. The graph suggests
that the Poisson distribution well matches the field data. A more
rigorous statistical test (Friendly 2000) has been conducted to test
the goodness-of-fit of the Poisson distribution for each of the
freeway segments during a.m. peak periods and nights. As a
comparison, the same statistical tests have also been conducted
for two other widely used distributions, normal distribution and
log-normal distribution, using the same data set. The results are
summarized in Table 1. At the 95% confidence interval, incident
occurrences on approximately 67 and 80% of subsegments of
the Capital Beltway follow a Poisson distribution during a.m. peak
periods and at night, respectively. In contrast, incident patterns on
only 26.7% of freeway segments followed the normal distribution
during a.m. peak periods, and none of them followed the normal
distribution at night. The results for the log-normal distribution are
even worse. Therefore, the assumption of a Poisson distributed
incident frequency is adopted at this stage. One may choose to
use a different distribution if supported by the field data.

Given the average incident rate λi, the probability that an
accident occurs in service segment i during a given time period is

Prðτ i ¼ 1Þ ¼ λie−λi ð1Þ

and the probability of two accidents occurring concurrently is

Prðτ i ¼ 2Þ ¼ 1

2
λ2
i e

−λi ð2Þ

This study further assumes that major incidents occurring on
different freeway segments are not correlated. Because of the
potential of having secondary incidents, this assumption may
not hold for all road segments. However, previous research has re-
vealed that the identification of secondary incidents is extremely
difficulty because of the lack of data (Chou and Miller-Hooks
2010; Zhang and Khattak 2010). Because the secondary incident
rate is insignificant (approximately 2–3%) based on the empirical
data [Chang and Rochon (2009), which used the data recorded in
accident reports from the Maryland State Police (MSP) for their
estimation], the independence assumption will be maintained in
this research, and future studies will further investigate correlations
in incident probability. The probability of two incidents happening
on segment i and k during the same time period is given by

Prðτ i ¼ 1; τ k ¼ 1Þ ¼
�
Prðτ i ¼ 1Þ × Prðτ k ¼ 1Þ; if i ≠ k
Prðτ i ¼ 2Þ; otherwise

ð3Þ

Given these inputs, a model for allocating emergency response
units should provide
• A response unit location strategy Y, as follows:

yj ¼
�
1; if j ∈ M
0; otherwise

ð4Þ

• An allocation strategy, denoted by X, where each member xij
equals 1 if accidents at segment i will be taken care by response
units located at location j, and 0 otherwise.
Differing from the previous model (Zhu et al. 2012), this study

also considers the possibility that two incidents ði; kÞ happen at the
same time and a back-up strategy Z must be designed. Each
member zikj equals 1 if the second incident k is taken care of
by response units located at location j, given the first incident
occurring at the location i, and 0 otherwise. Because of the
extremely low probability, this study ignores the cases in which
more than two incidents occur concurrently.

The objective of traffic management agencies can then be
summarized as follows:

minW ¼
X
i

X
j

Prðτ i ¼ 1Þxijtij þ
X
i

X
k

X
j

Prðτ i ¼ 1; τ k ¼ 1Þ

× ðxijtij þ zikjtkjÞ ð5Þ

The first term of the objective function represents the expected
response time according to the allocation strategy X if only one
accident happens. The second term represents the expected
additional response time if a second incident happens at the same
time. The strategy of dispatching the second response unit to the
second incident is summarized in Z, which will be determined by
the optimization algorithm. The overall objective is to minimize the
total expected response time W.

The following constraints are applied for both the demand and
the supply sides: (1) every freeway segment i and kmust be served;
(2) response units can only be dispatched from location j if they are
stationed there (yj ¼ 1); (3) if the only available response unit at
location j has been dispatched to take care the incident at location i,
it cannot be dispatched to respond to the second incident at location
k; and (4) the total number of available response units is limited by
the available resources (P). Constraint 1 can be expressed asX

j

xij ¼ 1 for all i ð6Þ

X
j

zikj ¼ 1 for all i; k ð7Þ

Constraint 2 is formulated as

yj ¼
�
1; ∃xij ¼ 1 or ∃zikj ¼ 1

0; otherwise
ð8Þ

By introducing a large number L (which should be equal to or
larger than I), constraint 2 can be reformulated asX

i

xij ≤ Lyj for all j ð9Þ

X
i

X
k

zikj ≤ Lyj for all j ð10Þ

Constraint 3 is formulated as

xij þ zjkj ≤ 1 for any i; k; j ð11Þ

Constraint 4 can simply be expressed asX
j

yj ≤ P ð12Þ

Given the aforementioned assumptions, the allocation task be-
comes a p-median problem with both xij and yj as binary variables,

Table 1. Percentage of Freeway Segments Passing the Goodness-of-Fit
Test of Different Distributions on Incident Frequencies using Data
Collected from the I-495 Capital Beltway in Maryland

Distributions

Time of day

a.m. peak (%) Night (%)

Poisson 67 80
Normal 26.7 0
Log-normal 10 0

Note: Results are based on the 95% confidence interval.
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as follows: xij ∈ 0 ∪ 1; ∀ i; j; zikj ∈ 0 ∪ 1; ∀ i; k; j; and
yj ∈ 0 ∪ 1; ∀ i; j.

The models can then be applied to decide the optimal locations
of freeway incident response vehicles, given the empirical distribu-
tion of accidents on each freeway segment and the corresponding
travel cost matrix. To facilitate the understanding of the model, the
major assumptions are summarized as follows:
• Incidents occur following a Poisson distribution with the mean

and variance empirically estimated for each freeway segment
and for each time period based on historical data;

• The covariance of incidents on different freeway segments was
not considered;

• No more than two incidents can happen during the same period;
• Each incident has to be responded to by one and only one

response unit;
• In the case in which two incidents happen during the same time

period, two different response units have to be dispatched; and
• The travel speed of response units is assumed constant.

The proposed model is solved by a Cplex algorithm in an ILOG
environment. The dispatch model will generate the response time
from dispatch until arrival under the optimized response unit
location-allocation strategy. In Maryland, CHART defines the start
of an incident response by either the detection of an incident by a
patrol unit or by the reception of an incident report at any operation
center. The total response time using prepositioning and dispatching
strategies will be the sum of travel time of the response team, which
are outputs from this model, and the incident detection and response
units dispatching time. The latter depends on the availability of traffic
monitoring devices, the efficiency of detection and communication,
the staffing level, and the efficiency of responsible agencies. The
availability of a response unit is also affected by the clearance time,
which is the period between the arrival and the departure of the re-
sponse unit. Depending on the severity, the response unit may stay at
the site until all traffic lanes are completely cleared, or move on if it is
a minor incident. The response unit has the discretion to decide how to
respond if the operation center requests an urgent assist in other sites.
Therefore, the impact of clearance time on availability of response
units varies from case to case. Limited by its scope, this study does
not consider the impact of clearance time on availability of response
units. Incident detection and dispatching time will be empirically es-
timated for different time periods using local data. The results will be
presented and discussed in the “Illustration of the Study Site” section.

Dispatching Model with Reliability Constraints

As discussed in the introductory section, traffic agencies usually
deploy incident management systems based on history incident
data. Considering the significant variance in the distribution of
incident frequency, traffic agencies may want to impose a con-
straint on the total response variance so as to insure a certain per-
formance level in the worst-case scenario. An empirical study on
variance in incident rates will be presented in the next section.
Given the average incident frequency at section i during a period
λi ∈ Nðμi; σ2

i Þ, a new constraint shall be imposed, as follows:

varðWÞ ≤ vc ð13Þ
where vc = critical value preselected by traffic management agencies.

Because the variance of total response time includes the second-
order term of decision variables, this problem may look like a non-
linear programming problem. However, notice that

xij × xij ¼ xij for any i; j ð14Þ
Similarly, there is

zikj × zikj ¼ zikj for any i; k; j ð15Þ

Further

xij × zikj ¼ 0 for any i; k; j ð16Þ

This can be easily confirmed from Eq. (11).
Therefore, Eq. (13) can be converted into a linear constraint if

it is assumed that incidents occurring on different segments are
independent

varðWÞ ¼
X
i

X
j

var½Prðτ i ¼ 1Þ�xijt2ij

þ
X
i

X
k

X
j

var½Prðτ i ¼ 1; τ k ¼ 1Þ�

× ðxijt2ij þ zikjt2kjÞ ≤ vc ð17Þ

Because the average incident rate for all subsegments of the
highway network in theory follows a normal distribution based
on the central limit theorem (CLT), the objective function should
be converted as minimizing the expected total response time

minW ¼
X
i

X
j

E½Prðτ i ¼ 1Þ�xijtij

þ
X
i

X
k

X
j

E½Prðτ i ¼ 1; τ k ¼ 1Þ�

× ðxijtij þ zikjtkjÞ ð18Þ

To solve this problem, one has to derive the expectation and
variance of incident probabilities, given the distribution of the aver-
age incident frequency on each segment derived from the historical
data. For convenience of presentation, the subscript for the segment
from the presentation is hereafter ignored

λ ∼ Nðμ; σ2Þ ð19Þ

fðλÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

�
− ðλ − μÞ2

2σ2

�
ð20Þ

Prðx ¼ 1Þ ¼ λe−λ ð21Þ

E½Prðx ¼ 1Þ� ¼
Z ∞
−∞

λe−λfðλÞdλ

¼
Z ∞
−∞

λe−λ 1ffiffiffiffiffi
2x

p
σ
exp

�
− ðλ − μÞ2

2σ2

�
dλ

¼ exp

�
−μþ σ2

2

�
ðμþ σ2 − σ2Þ

¼ μ exp

�
−μþ σ2

2

�
ð22Þ

Var½Prðx ¼ 1Þ� ¼
Z ∞
−∞

fλe−λ − E½Prðx ¼ 1Þ�g2fðλÞdλ

¼ expð−2μþ σ2Þfσ2 expðσ2Þ þ μ2½expðσ2Þ − 1�g
ð23Þ

Eqs. 22 and 23 derived the closed-form solutions for the expect-
ation and variance of the probability that an incident is going to
happen on a freeway segment during a certain time period.
The results for the scenarios in which two incidents occur
concurrently become quite complex. To simplify the process, this
research uses the Monte Carlo simulation approach to derive the
expectation and variance of corresponding terms. For the crossing
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terms, one should notice that if A and B are independent,
then

VarðABÞ ¼ E2ðAÞVarðBÞ þ E2ðBÞVarðAÞ þ VarðAÞVarðBÞ
ð24Þ

Therefore, one can derive all unknowns in Eq. (17) and the ob-
jective function Eq. (18) based on the historical data, then solve the
problem with a reliability constraint Eq. (17) and compare it with
the base-case scenario. Numerical evaluation results will be
presented in the section of “Strategic Alternatives and Study
Results”.

Patrolling Model

Note that the total incident response time usually includes three
components: (1) incident detection time; (2) waiting time (from in-
cident detection until a response unit is dispatched); and (3) re-
sponse time from dispatch until arrival (Hall 2002). The
detection of incidents during the daytime is relatively convenient,
and the dispatching process is usually faster because of better co-
ordination and more staff during the working hours. Therefore, a
dispatching system may exhibit some advantage during peak peri-
ods. In contrast, the first two terms in the total response time may
become significantly longer late at night, making the patrolling sys-
tem more preferable because it can potentially minimize the re-
sponse time.

This study considers a patrolling system that divides the entire
freeway network into N beats. It is assumed that set A includes all
link segments that belong to beat n, and there are vn vehicles pa-
trolling on this segment. Thus, the average headway becomesP

i;j∈A tij=vn. The average detection time for any incident is half
of the headway 1

2

P
i;j∈A tij=vn. The objective to minimize the total

detection time can be formulated as follows:

minW ¼
X
n

1

2

X
i;j∈An

tijPrðτ ij ¼ 1Þ=vn ð25Þ

A generalized design for a freeway patrol service system is rec-
ognized to be very complex, and in many cases is formulated as a
mixed-integer nonlinear optimization problem that does not have an
efficient solution algorithm. The focus of this paper is not to design
such a system, but to compare the dispatching with the patrolling
systems. Therefore, this study will not further discuss its solution
algorithm. Instead, the numerical example provided in this study
will take advantage of the network configuration of the beltway
and solve the problem heuristically by the following steps:
1. Calculate the sum of ti Prðτ i ¼ 1Þ on the entire beltway.
2. Divide the sum by n, the number of available response units.
3. Starting from the rightmost point of I-495 where it hits the

Virginia boundary, patrol beats are built one-by-one with
the equal incident headway ti × Prðτ i ¼ 1Þ=n. Because a
patrol vehicle cannot patrol only part of a freeway segment
between two exits (this study does not consider the probability
of emergency crossings on the median), the segment
allocations are rounded.

4. Calculate the total response time on each beat A by applying
the average detection time,

P
i;j∈A tij, to all incidents that

occurred on beat A.
On a beltway, solutions from this heuristic are consistent with

the minimization problem described by Eq. (25). The next section
will present the data that are used in this study. The “Strategic Al-
ternatives and Study Results” section will then apply the models
proposed in this study along with analysis results.

Illustration of the Study Site

Assuming that the demand (incidents) and the supply (response
units) are located on nodes (freeway exits), one can then compute
the travel time from node i to node j based on the link travel time
described in the next subsection. This assumption is for conven-
ience of presentation and can be easily relaxed. Incident data for
the case study are obtained from the CHART II database and
the Maryland Accident Analysis Reporting System (MAARS),
whereas travel speed on each freeway segment was collected from
INRIX detectors and documented by the Center for Advanced
Transportation Technology (CATT) laboratory at the University
of Maryland.

To conduct the performance evaluation, different models are
first computed by using data from 2006–2008, and then evaluated
with 2009 and 2010 data. The incident probability on freeway
segment i, Prðτ i ¼ 1Þ, is estimated based on the data from
2006–2008.

Study Site and Current Operations Status

The study site is the Capital Beltway (I-495/I-95) in Maryland from
the Woodrow Wilson Bridge to the American Legion Bridge (see
Fig. 2). It is a 68-km (42-mi) long segment with 30 distinct exits
and is one of the major corridors managed by CHART.

Currently, Traffic Operation Center-3 (TOC-3) of CHART is
located at exit 25, having 11 field operations units to manage
incidents occurring on I-95, I-270, US-50, MD-295, and the
Capital Beltway in Prince George’s and Montgomery counties.
They provide incident response and driver assists for 16 h each
day (5 a.m.–9 p.m.) Monday–Friday.

Fig. 3 summarizes the average speed by time of day in 2009. It
indicates that the average traffic speed varies over the locations, the
directions, and the time of day. For the inner loop of I-495/I-95, the
average speeds for the p.m. peak period fluctuate considerably over
these exits, whereas they display relatively constant patterns during
other times of day over the entire network. In contrast, the outer
loop of I-495/I-95 exhibits quite stable speed patterns from exits
0–25, and the speed drops significantly beyond that segment.
Notably, during the a.m. peak period, its speed is below
48 km=h (30 mi=h) between exits 27 and 28, although the average
speed at night at the same segment is approximately 96 km=h
(60 mi=h). Therefore, travel times for response units may vary
significantly, depending on the travel direction and the time of
day. Thus, the travel time used in this study is asymmetric for each
time interval.

Incident Rates

Fig. 4 illustrates different patterns for average incident rates by time
of day along the Capital Beltway in 2011. The CHART defines
incidents as any events that affect traffic flow on the roadway.
These include disabled vehicles on the roadway/shoulder, vehicle
fire, road debris, emergency roadwork, police activities, and vehicle
crashes. However, if a minor collision was resolved by drivers and
was not reported to CHART, it would not be recorded in the
CHART database and cannot be considered in this study. Because
of the limit in scope, this study does not differentiate incidents with
different levels of severity. However, the severity could have a
significant impact on the clearance time, which would be addressed
in future studies.

The figure shows significant fluctuations of the average incident
rate along the study links. Also, each time of day shows a unique
pattern of its incident rate distribution. It is obvious that most
segments during p.m. peak hours have the highest average incident
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Fig. 2. Study links in the Capital Beltway (I-495/I-95) in Maryland (Map data © 2013 Google)

(a)

(b)

Fig. 3. Average traffic speed patterns by time of day on I-495/I-95: (a) inner loop; (b) outer loop
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rate, whereas the incident rates at night are much lower than those
at any other times, as shown in the vertical scale of Fig. 4(b).
Historical field data from MAARS indicate that approximately
10% of total incidents (278 cases in the Capital Beltway in
2011) occured at night, and most of these cases were collision-type
incidents. The locations showing the most frequent incidents are
also different over different times of a day. For example, exits
27, 33, 31, and 3 show the highest incident rate during the a.m.
peak, p.m. peak, off-peak at daytime, and night, respectively.

These findings would be valuable for responsible agencies in-
tending to take the experience-based strategy to allocate emergency
response units at these sites having high incident rates. Moreover,

Fig. 4 shows that traffic operators should consider the distributions
of incident rates both by the segment and the time of day to
determine the optimal fleet size for each shift and to allocate
available resources so as to improve the efficiency and effectiveness
of an incident response program.

Response Efficiency

According to the Highway Capacity Manual [Transportation
Research Board (TRB) 1994], incident durations are defined to
be the time elapsed from the onset of an incident to the end of
its clearance. In most cases, it is impossible to know exactly when

(a)

(b)

Fig. 4. Average incident rates by time of day on the Capital Beltway (I-495/I-95), Maryland: (a) different time of day; (b) night only

Fig. 5. Distribution of average dispatching time at different time of the day based on 2009 data
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the detected incident occurred; therefore, many studies defined the
incident duration as the time interval between the incident detected
and cleared (e.g., Garib et al. 1997; Nam and Mannering 2000;
Smith and Smith 2001). This study focuses on the total incident
response time, which is the sum of the dispatching time and the
travel time of the response team. The dispatching time represents
a significant portion of the total response time in the detection and
dispatching system, and its length varies during different periods.

Fig. 5 shows that the average dispatching times between 8 p.m.
to 3 a.m. are much longer than those during other time periods. The
variances of dispatching times at night also seem much higher than
those during daytime. The main reason could be the difference in
the service quality of the response team. Most incident manage-
ment units operate during the daytime so that incidents are more
likely to be managed promptly and efficiently. In contrast, the
primary CHART operation centers (TOCs 3, 4, and 7) currently
do not operate during the night so that the overall incident response
efficiency was significantly degraded over those periods.

Strategic Alternatives and Study Results

Results for Dispatching and Patrolling Strategies

To evaluate the performance of the proposed model, this study uses
the annual total response time as the measure of effectiveness for
comparison. Scenarios with different available units (2–11) are
tested here, given the maximum of 11 units for patrol operations
under CHART. Table 2 summarizes the optimized operation
strategies. The numbers under patrolling strategies represent the
locations (freeway segment or exit number) where the response
units should be prepositioned, whereas the numbers under roaming
strategies represents the starting point and ending point (repre-
sented using the corresponding freeway segment or exit numbers)
of each roaming beat. The number of prepositioned locations or the
number of beats should equal the number of available units under
the optimized condition.

These candidate strategies are applied to the 2009 incident data
for comparison of response efficiency. The numbers of incidents for
this analysis are 1,167 and 78 for the a.m. peak and night periods,
respectively, in 2009.

Fig. 6 displays the estimated total response time by allocating
the emergency team according to each strategy. During the a.m.
peak period, the dispatching strategy outperforms the patrolling
strategy for most fleet sizes, especially when only small numbers
of units are available. However, the total response time by
patrolling strategies drops drastically as the fleet size increases,
and eventually outperforms the dispatching strategy when given
10 units. In contrast, the patrolling strategy consistently outper-
forms the dispatching strategy for any fleet sizes during the
night, and their differences in the total travel time are consistently
significant.

These results imply that during the peak periods, dispatching
strategies would perform better than patrolling strategies when only
a small number of units is available. It could be because incident
detection efficiency by various sources (e.g., CCTV, media, citi-
zens, and police) is fairly good during peak hours. Thus, response
times by dispatching strategies are likely to be shorter than those by
the patrolling operations. However, as more units are available,
their efficiencies evolve to the same level, and at a certain point,
the patrolling strategy would work better than the dispatching
method. This finding can be explained by the fact that as more units
are available, their assigned segments become shorter and the fre-
quency of patrolling increases so that their chances to find incidentsT
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would increase and the travel times to reach incident sites could be
shorter than those by dispatching from depots. Obviously, the de-
tection times at night would be much longer because of the limited
availability of detection sources. Therefore, patrolling strategies
would save a significant amount of detection times.

Results with Variances of Incident Probabilities

Taking into account variances of incident probabilities has slightly
changed the optimal allocations for response units under the
dispatching strategy. For example, the proposed model, considering
the variance of incident probabilities, yields the following five
locations for deploying five response units during the a.m. peak
hours: exits 3, 13, 23, 30, and 35. Similarly, the model, considering
the variance, suggests exits 3, 13, 23, 30, and 38 for optimal
allocation during a night period. As presented in Table 3, the annual

total travel time (using 2009 data) for allocating response units,
based on the models accounting for data variances, are slightly
better than those without using such information. This indicates
that the variances of incident patterns would also be an important
factor in designing an incident response strategy.

Optimal Response Units from the Benefit-Cost
Perspective

The aforementioned analysis provides the optimal deployment
strategy for the available emergency response units. However, in
view of the socioeconomic cost and the diminishing resources
for traffic management, this study further explores the optimal
number of emergency response units under the projected distribu-
tion of incidents and traffic patterns. The socioeconomic cost
reduction because of an efficient incident response strategy in-
cludes the savings on incident-induced delays, fuel consumption,
and emissions.

Various formulas have been proposed in the literature to
estimate delays and the associated benefits (Maccubbin et al.
2008; Chang and Rochon 2009; Lindley 1989; Latoski et al.
1998; Chou et al. 2010; Bertini 2006; Haghani et al. 2006; Guin
et al. 2007). To be consistent with the practice of the Maryland
State Highway Administration (MSHA) and take advantage of
the locally calibrated parameters, this research adopts the following

(a)

(b)

Fig. 6. Total response times by strategy: (a) a.m. peak; (b) night

Table 3. Comparisons of Total Travel Time and Optimal Locations for w/
and w/o Variance Consideration

Time
of day

w/o variance w/ variance

Total travel
time (min)

Optimal
location

Total travel
time (min)

Optimal
location

a.m. peak 2,545 3, 11, 23, 30, 35 2,534 3, 13, 23, 30, 35
Night 168 3, 9, 17, 25, 34 134 3, 13, 23, 30, 38
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procedure for total delay and direct benefit estimation (Chang and
Rochon 2009).
1. Compute the total delay reduction with each candidate strategy

using the following formulation and information:

D ¼
X
i

eμ × fφ ×

�
b
n

�
θ
× dγ × N ð26Þ

where D = total excessive delay incurred by the incidents on
top of the recurrent congestion; f = traffic volume (vehicle per
lane per h) at the segment i; b and n = number of lanes blocked
and the total number of lanes, respectively; d = average inci-
dent duration (h) at the segment i; N = total number of inci-
dents at the segment i; and μ, φ, θ, γ = parameters. In this
study, −10.19, 2.8, 1.4, and 1.78 have been used, respectively,
as recommended by CHART.

Table 4 summarizes the value of parameters used in this
study to estimate the savings on delay and other benefits
related to different incident response strategies.

2. Estimate the fuel consumption and emissions from the delay
reduction using the following information:
• Fuel consumption for passenger cars: 0.59 L (0.156 gal.) of

gasoline=h of delay (Ohio Air Quality Development
Authority)

• HC: 13.073 g=h of delay (provided by MDOT in 2000)
• CO: 146.831 g=h of delay (provided by MDOT in 2000)
• NO: 6.261 g=h of delay (provided by MDOT in 2000)
• CO2: 8.8 kg (19.56 lbs) CO2=gal: of gasoline (Energy

Information Administration)
3. Convert the saved delay, fuel, and emissions to the mone-

tary value.
Similar to step 3, monetary conversion factors have been

used to estimate the reduced delay and associated by-products
in a monetary value. The values and sources for factors are
shown as follows:
• Delay: $27.37=h (U.S. Census Bureau in 2008)
• Fuel: $2.32=gal: (Energy Information Administration

in 2009)
• HC: $6,700=t (DeCorla-Souza et al. 1998)
• CO: $6,360=t (DeCorla-Souza et al. 1998)
• NO: $12,875=t (DeCorla-Souza et al. 1998)
• CO2: $23=metric t [Congressional Budget Office (CBO)’s

cost estimate for S. 2191, America’s Climate Security Act
of 2007)

To analyze the marginal contribution and cost of each additional
response unit, this study evaluated the emergency response team of
2–11 units. Because dispatching strategies outperform patrolling
strategies at most fleet sizes during the a.m. peak hours, the

Table 4. Traffic and Incident Information Used to Estimate Incident-
Induced Delays

Variables a.m. peak Night

AADT on I-495 195,238 195,238
PHF 0.95 N/A
Adjusted AADT
for peak hours

205,513 205,513

Number of lanes (one direction) 4 4
Average clearance time
with CHART (min)

12.05 33.00

Average dispatching time
with CHART (min)

1.79 5.62

Average lane blockage
attributable to incidents

1 1

(a)

(b)

Note: dashed lines are smoothed lines of the empirical results (solid lines)

Fig. 7. Marginal benefit-cost ratios for additional response unit
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marginal benefit-cost analysis was conducted only for the dispatch-
ing strategy. By the same token, the marginal benefit/cost analysis
was conducted only for the patrolling strategy for the night period.
As shown in Fig. 7, the marginal benefit-cost ratios for both
analyses quickly decrease as the number of response unit increases,
and then their slopes stay relatively flat. The information provided
by this analysis with the smooth dashed line can serve as the basis
for traffic management agencies to decide the most cost-beneficial
fleet size.

Conclusions

Both the patrolling and the prepositioned strategies for allocating
emergency traffic response units have been implemented in prac-
tice, and each has its strengths and limitations. There has been no
consensus in the literature about the superiority of one over the
other, and the best practice may well depend on the incident
patterns and traffic conditions. With a limited budget and resources,
an analysis tool is needed to support the analysis, design, and
implementation of the most cost effective incident response system.
This study has proposed a robust model to optimize the application
of the dispatching strategy with available response units. An
efficient heuristic has also been proposed to best use the patrolling
strategy that takes advantage of the target traffic corridor’s unique
geometric features. Performance of the two different systems has
been evaluated and compared with various incidents and various
patterns.

Because the assumption of incident patterns has a critical impact
on model performance, this study has used the empirical data and
statistical tests to select the best fit distribution. For most road
segments, a Poisson distribution fits the data well. It also exhibits
a strong advantage in simplifying the modeling process and
keeps the results tractable. Therefore, this study adopts a Poisson
distribution to model incident patterns.

The strength of the proposed model has been demonstrated
through an application on the I-495/I-95 Capital Beltway in the
metropolitan Washington, DC area. Incident data from 2006–
2010 were used. The extensive experimental results have revealed
that the effectiveness of the two different response strategies varies
with some critical factors, including the spatial distribution of in-
cident frequency over different times of a day, the fleet size of the
response team, the congestion level, and the available detection
sources. The analysis results clearly reveal that the dispatching
strategy is more preferable during the peak periods, whereas the
patrolling strategy leads to a shorter response time during the night
under the traffic and incident conditions observed on the Capital
Beltway. The reason is that the dispatch time during the night is
much longer for the TOCs in Maryland. This pattern could be true
for other metropolitan areas given the challenge of detecting an in-
cident and the low level of available staff at night. However, the
model has to be calibrated using locally collected data applied be-
fore such conclusions can be drawn.

The paper has further reported that the variance of incident rates
may influence the performance of incident response systems. Its
impact may become significant if the incident patterns are volatile
and a limited number of response units are available. Because traf-
fic agencies usually deploy their system based on historical data,
the impact of variance in incident rates has to be carefully evaluated
and fully considered in system design.

Analysis in this study demonstrates that the proposed methods
can support the responsible highway agencies to best operate their
available incident response fleet for different time periods based on
all resources, the quality of available historical incident data, and

various incident detection sources. The study has further presented
a methodology to determine the most cost-beneficial fleet size
operated with the proposed strategies, considering the marginal
cost and benefit of an additional response unit on the resulting total
social benefits. The analysis results with the Capital Beltway,
despite being exploratory in nature, could serve as the basis for
highway agencies to review and optimize their incident response
and management program.
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