CONTENTS

- **Research Background**
 - Critical Issues

- **Framework**
 - Model 1
 - Model 2
 - Model 3

- **Methodology**
 - Critical Issues
 - Model Development
 - Model Validation/ Evaluation

- **Conclusions**
 - Contributions
 - Future works
RESEARCH BACKGROUND
Research Background

BENEFITS:
Increased Popularity of Superstreets.

- **Economical Benefits:** *Less expensive than an interchange;*
- **Safety Benefits:** *Reduction in number & severity of the collisions;*
- **Operation Benefits:** *Provide signal progressions along the arterial; and*
- **Environmental Benefits:** *Reduction in pollutions.*
Research Background

Literature Review

- The distance between the main intersection and U-turn crossover is the dominating factor that influence a Superstreet’s safety performance (Liu, 2007; Hochestein, 2009; Hugues, 2010; Olarte, 2011).

- In fact, over the past decades, only limited studies (Olarte, 2011) have attempted to address the issues of design and operations of a Superstreet.

- A newly published report (FHWA, 2014) also indicated the lack of sufficient information in the area of designing a Superstreet.

Existing Literature fall short on the subjects of Design and Evaluation of Superstreets.
Critical Issues

Limitations of Existing Studies

- How to determine the U-turn offset length that dominates the geometric design of a Superstreet?
- What would be the criteria for determining the need of installing signals for a Superstreet?
- How to assess whether the bay length among a signalized Superstreet is sufficient to prevent any spillback from happening?
- How to design a proper signal timing plan, considering its unique geometric layouts?
- How to minimize the delay experienced by the minor road drivers due to the detour operations in a Superstreet.
02 THESIS FRAMEWORK
THESIS FRAMEWORK

1. **Minimum U-turn Offset Model for Un-signalized Superstreet**
 - a. Critical Components of U-turn offset
 - b. Key Input/Output
 - c. Model Development
 - d. SSAM Evaluation
 - e. Extended Applications

2. **Interval-based Bay Length Evaluation Models for a Signalized Superstreet**
 - a. Operational Analysis
 - b. Critical Issues
 - c. Model Development
 - d. Model Validation

3. **Two-stage Signal Optimization Model for a Signalized Superstreet**
 - a. General Algorithm
 - b. Signal Control Algorithm
 - c. Solution
 - d. Case Study
MINIMUM U-TURN OFFSET MODEL FOR A UN-SIGNALIZED SUPERSTREET
Critical Components of U-turn Offset

- l_1: Acceleration and merging length;
- l_2: Lane-changing length;
- l_3: Deceleration and initial queue length;
- L: Minimum U-turn offset.
Key Components

Input:

- **Acceleration Rate:** \(a_1 \)
- **Headway Distribution:** \((\lambda, \bar{t}, t_m, t_{nr}) \)
- **Critical Gap Distribution:** \((\mu, \sigma) \)

Output:

- **Acceleration & Merging Length:** \(l_1 \)
- **Lane-Changing Length:** \(l_2 \)
- **Deceleration & Initial Queue Length:** \(l_3 \)
- **Minimum U-turn Offset Length:** \(L \)

Notation and Description

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>AASHTO recommended acceleration rate</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Parameter for major road headway distribution</td>
</tr>
<tr>
<td>(\bar{t})</td>
<td>Average gap in second from major traffic</td>
</tr>
<tr>
<td>(t_m)</td>
<td>The minimum headway from major traffic</td>
</tr>
<tr>
<td>(t_{nr})</td>
<td>The maximum headway from major traffic</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Mean of critical gap distribution</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Deviation of critical gap distribution</td>
</tr>
<tr>
<td>(a_2)</td>
<td>AASHTO recommended deceleration rate</td>
</tr>
<tr>
<td>(\rho = \frac{\text{arrival _ rate}}{\text{service _ rate}})</td>
<td>Parameter for M/M/1 system</td>
</tr>
<tr>
<td>(l_1)</td>
<td>Acceleration & merging length</td>
</tr>
<tr>
<td>(l_2)</td>
<td>Kth lane changing length</td>
</tr>
<tr>
<td>(l_3)</td>
<td>Deceleration & initial queue length</td>
</tr>
<tr>
<td>(L)</td>
<td>Minimum U-turn offset length</td>
</tr>
</tbody>
</table>

Output:

- **Acceleration & Merging Length:** \(l_1 \)
- **Lane-Changing Length:** \(l_2 \)
- **Deceleration & Initial Queue Length:** \(l_3 \)
- **Minimum U-turn Offset Length:** \(L \)
Merging Scenarios

The merging maneuver, based on the relative gaps between the leader and the follower, can be classified into three distinct types:

1) **Free merging:**

 - **Target Lane**
 - **Subject Lane**
 - **Leading Vehicle**

 - **Subject Vehicle**

2) **Forced merging:** the follower was ‘forced’ to break pedal to maintain safe space headway;

 - **Target Lane**
 - **Subject Lane**
 - **Following Vehicle**
 - **Leading Vehicle**

 - **Subject Vehicle**

 Most dangerous

3) **Cooperative merging:**

 - **Target Lane**
 - **Subject Lane**
 - **Following Vehicle**
 - **Leading Vehicle**

 - **Subject Vehicle**

where v_1 is the speed of mainline traffic;
v_0 is the speed of subject vehicle;
t_r is the average reaction time, 1.0s;
h is a given time headway;
l_v is the AASHTO recommended passenger car length, 20ft;
a_2 is the AASHTO recommended deceleration rate, 11.2ft/s².

$$t^* \geq \frac{(v_1 - v_0)^2}{2a_2 v_1} + \frac{l_v}{v_1} + t_r$$

For any randomly given subject vehicle, the minimum acceptable headway must be no less than t^*.
Assumptions

During the merging process, subject vehicle has to accelerate from stop. Assuming

(1) The subject vehicle accelerates from 0_{mph} with a fixed acceleration rate until reaches speed limit v_1, and then stay at the same speed until reach the U-turn location;

(2) Critical headway t_c follows a certain distribution, in this case, assume critical gap for drivers from side street follows normal distribution $N(\mu, \sigma^2)$;

(3) The headway follows negative exponential distribution since the car arrival follows Poisson distribution.
Acceleration & Merging Length

For a random vehicle, at time point t, the lane-changing probability can be:

$$ F(t) = P\{h \geq t_c(t)\} $$

Where t_c denotes the critical gap for a certain driver at time point t.

If assuming that at time point $t + \Delta t$, where $\Delta t \to 0$,

$$ p_1(t + \Delta t) = p_1(t) + (1 - p_1(t))\Delta t(F(t)) $$

Since $\Delta t \to 0$, we can have $t_c(t + \Delta t) = t_c(t)$, then

$$ \frac{p_1(t + \Delta t) - p_1(t)}{\Delta t} = [1 - p_1(t)] \cdot F(t) $$

$$ -\ln[1 - p(t)]dP = \int_0^\infty F(t) \cdot dt $$

how to calculate $F(t)$?

$F(t)$ is not a constant but a function with respect to time. So we cannot have closed form of $P(t)$

$F(t)$ stands for the probability for a random driver merging into major road at any time point t. It is a function with respect to both time and human characteristic.
Merging Length

The probability of a driver having a critical gap equals t_c^* at time point t is

$$f(t_c^*)dt = \left[\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(t_c^* - \mu)}{2\sigma^2} \right) \right] dt$$

Meanwhile, the headway distribution follows shifted negative exponential distribution as

$$\Pr(h \geq t_c) = \begin{cases} e^{-\lambda (t_c - t_m)}, & \text{for } t_c \geq t_m \\ 0, & \text{for } t_c < t_m \end{cases}$$

Where $\lambda = 1/(\bar{t} - t_m)$ while \bar{t} is the average gap (s) and t_m is the minimum headway(s).

A random vehicle to conduct a successful merging can be

$$\int_{t_c=0}^{\infty} \Pr(h \geq t_c) f(t_c) dt$$
Merging Length

There exist two thresholds t_m, t_{nr} that stand for the lower bound and upper bound, respectively (Pollatschek, 2002).

Therefore, the overall merging probability can be expressed as:

$$\int_{t_c=0}^{\infty} \Pr(h \geq t_c) f(t_c) dt = \int_{t_c=0}^{\max(t_m,t_*)} \Pr(h \geq t_c) f(t_c) dt + \int_{t_c=\max(t_m,t_*)}^{t_{nr}} \Pr(h \geq t_c) f(t_c) dt + \int_{t_c=t_{nr}}^{\infty} \Pr(h \geq t_c) f(t_c) dt$$

since $\Pr(h \geq t_c) = 0$, $\int_{t_c=0}^{\max(t_m,t_*)} 0 * f(t_c) dt = 0$

Finally, we can have

$$\int_{t_c=0}^{t_{nr}} \Pr(h \geq t_c) f(t_c) dt = \int_{t_c=\max(t_m,t_*)}^{t_{nr}} \Pr(h \geq t_c) f(t_c) dt = e^{-2\mu\sigma^2 + \lambda^2\sigma^4 \over 2\sigma^2}$$

$$\int_{t_c=\max(t_m,t_*)}^{t_{nr}} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[\frac{-[t_c - (\mu - \lambda \sigma^2)]^2}{2\sigma^2} \right] dt$$

$N \sim (\mu - \lambda \sigma^2, \sigma^2)$

Lane-Changing Length

As $p_k(t)$ denotes the probability that the vehicle is in lane k at time point t.

Remember for 1st successful merging probability, we have:

$$p_1(t + \Delta t) = p_1(t) + (1 - p_1(t))\Delta t F(t)$$

For k_{th} lane change, we can get

$$p_k(t + \Delta t) = p_k(t) + [1 - p_k(t)] \cdot p_{k-1}(t) \cdot \Delta t \cdot F(t)$$

$$p'_k(t) = [1 - P_k(t)] \cdot p_{k-1}(t) \cdot F(t)$$

Because both $F(t)$ and $p(t)$ are not a constant but functions with respect to time. So we cannot have closed form of $P_k(t)$.
Numerical Example

Given the headway distribution of arterial traffic and the predetermined overall successful rate, we can get the relationship between probability of k^{th} lane changes and the required distance.

A numerical example is shown on the right-hand side:

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{ux}</td>
<td>11 seconds</td>
</tr>
<tr>
<td>t_m / t_{2a}</td>
<td>2 seconds</td>
</tr>
<tr>
<td>\bar{t}</td>
<td>5.6 seconds</td>
</tr>
<tr>
<td>$\bar{\bar{t}}$</td>
<td>0.28</td>
</tr>
<tr>
<td>$\bar{\mu}$</td>
<td>0.67</td>
</tr>
<tr>
<td>a_1</td>
<td>4.0–4.5 ft/s2</td>
</tr>
<tr>
<td>a_2</td>
<td>11.2 ft/s2</td>
</tr>
<tr>
<td>v_1</td>
<td>63–67 mph</td>
</tr>
</tbody>
</table>

Minimum U-turn Offset Model for an Un-Signalized Superstreet
SSAM Evaluation

US 301 @ Ruthsburg Rd, MD

- Stop control for EB minor road
- Yield control for WB minor road
- Studies Segment: South-Bound U-turn Segment

- Scenario 1: 1500ft southern U-turn offset (Field implementation)
- Scenario 2: 1100ft southern U-turn offset (Mean of model output)
- Scenario 3: 700ft southern U-turn offset (Shortened U-turn offset)

The only difference between three scenarios is the length of southern U-turn offset. The rest of geometrics are the same for all scenarios and are measured from the field.
SSAM Measurements

- Minimum Time To Collision (TTC)
- Minimum Post-Encroachment Time (PET)
- Initial Deceleration Rate (DR)
- Maximum Speed (MaxS)
- Maximum relative Speed Difference (DeltaS)
- Maximum Deceleration Rate (MaxD)
- Maximum “post collision” DeltaV (MaxDeltaV)

MaxDeltaV is the maximum speed change of either vehicle in the conflict.
U-turn Segment safety performance comparison (1100ft VS. 1500ft)

<table>
<thead>
<tr>
<th>SSAM Measures</th>
<th>Mean (1100ft)</th>
<th>Variance (1100ft)</th>
<th>Mean (1500ft)</th>
<th>Variance (1500ft)</th>
<th>t value</th>
<th>t critical</th>
<th>Significant</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC</td>
<td>0.217</td>
<td>0.184</td>
<td>0.217</td>
<td>0.144</td>
<td>-0.002</td>
<td>1.668</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>PET</td>
<td>0.08</td>
<td>0.026</td>
<td>0.083</td>
<td>0.02</td>
<td>-0.018</td>
<td>1.668</td>
<td>NO</td>
<td>-0.003</td>
</tr>
<tr>
<td>MaxS</td>
<td>22.441</td>
<td>8.983</td>
<td>22.97</td>
<td>11.465</td>
<td>-0.868</td>
<td>1.668</td>
<td>NO</td>
<td>-0.529</td>
</tr>
<tr>
<td>DeltaS</td>
<td>8.678</td>
<td>9.953</td>
<td>9.942</td>
<td>27.489</td>
<td>-1.263</td>
<td>1.668</td>
<td>NO</td>
<td>-1.265</td>
</tr>
<tr>
<td>DR</td>
<td>-1.004</td>
<td>5.08</td>
<td>-1.203</td>
<td>5.582</td>
<td>0.443</td>
<td>1.668</td>
<td>NO</td>
<td>0.2</td>
</tr>
<tr>
<td>MaxD</td>
<td>-2.482</td>
<td>9.743</td>
<td>-2.838</td>
<td>10.67</td>
<td>0.587</td>
<td>1.668</td>
<td>NO</td>
<td>0.355</td>
</tr>
<tr>
<td>MaxDeltaV</td>
<td>4.485</td>
<td>2.711</td>
<td>5.113</td>
<td>7.253</td>
<td>-1.214</td>
<td>1.668</td>
<td>NO</td>
<td>-0.628</td>
</tr>
</tbody>
</table>

No statistically significant difference between 1500ft and 1100ft in terms of both number of conflicts and all SSAM measurements.

No significant difference in terms of conflict severity!
Safety Comparison (Scenario 3 VS. Scenario 2)

- **U-turn Segment safety performance Comparison (700ft VS. 1100ft)**

<table>
<thead>
<tr>
<th>SSAM Measures</th>
<th>Mean (700ft)</th>
<th>Variance (700ft)</th>
<th>Mean (1100ft)</th>
<th>Variance (1100ft)</th>
<th>t value</th>
<th>t critical</th>
<th>Sigficanct</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC</td>
<td>0.19</td>
<td>0.187</td>
<td>0.217</td>
<td>0.184</td>
<td>-0.136</td>
<td>1.668</td>
<td>NO</td>
<td>-0.026</td>
</tr>
<tr>
<td>PET</td>
<td>0.078</td>
<td>0.028</td>
<td>0.08</td>
<td>0.026</td>
<td>-0.01</td>
<td>1.668</td>
<td>NO</td>
<td>-0.002</td>
</tr>
<tr>
<td>MaxS</td>
<td>22.952</td>
<td>8.076</td>
<td>22.441</td>
<td>8.983</td>
<td>1.044</td>
<td>1.668</td>
<td>NO</td>
<td>0.511</td>
</tr>
<tr>
<td>DR</td>
<td>-0.57</td>
<td>2.399</td>
<td>-1.004</td>
<td>5.08</td>
<td>0.909</td>
<td>1.677</td>
<td>NO</td>
<td>0.434</td>
</tr>
<tr>
<td>MaxD</td>
<td>-2.907</td>
<td>10.679</td>
<td>-2.482</td>
<td>9.743</td>
<td>-0.797</td>
<td>1.668</td>
<td>NO</td>
<td>-0.425</td>
</tr>
<tr>
<td>MaxDeltaV</td>
<td>6.791</td>
<td>10.316</td>
<td>4.485</td>
<td>2.711</td>
<td>3.943</td>
<td>1.67</td>
<td>YES</td>
<td>2.306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conflict Types</th>
<th>Mean (700ft)</th>
<th>Variance (700ft)</th>
<th>Mean (1100ft)</th>
<th>Variance (1100ft)</th>
<th>t value</th>
<th>t critical</th>
<th>Sigficanct</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.86</td>
<td>1.86</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>Rear-end</td>
<td>5.4</td>
<td>6.3</td>
<td>5</td>
<td>22</td>
<td>0.168</td>
<td>1.86</td>
<td>NO</td>
<td>0.4</td>
</tr>
<tr>
<td>Lane changing</td>
<td>2.8</td>
<td>0.7</td>
<td>1</td>
<td>2</td>
<td>2.449</td>
<td>1.86</td>
<td>YES</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>8.2</td>
<td>7.2</td>
<td>6</td>
<td>36</td>
<td>0.748</td>
<td>1.86</td>
<td>NO</td>
<td>2.2</td>
</tr>
</tbody>
</table>

- **Increased possible lane-changing collisions under 700ft than in 1100ft;**
- **More sever collisions under 700ft than in 1100ft.**
Safety Comparison (Scenario 3 VS. Scenario 1)

- **U-turn Segment safety performance Comparison (700ft VS. 1500ft)**

<table>
<thead>
<tr>
<th>SSAM Measures</th>
<th>Mean (700ft)</th>
<th>Variance (700ft)</th>
<th>Mean (1500ft)</th>
<th>Variance (1500ft)</th>
<th>t value</th>
<th>t critical</th>
<th>Significant</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC</td>
<td>0.19</td>
<td>0.187</td>
<td>0.217</td>
<td>0.144</td>
<td>-0.159</td>
<td>1.664</td>
<td>NO</td>
<td>-0.027</td>
</tr>
<tr>
<td>PET</td>
<td>0.078</td>
<td>0.028</td>
<td>0.083</td>
<td>0.02</td>
<td>-0.031</td>
<td>1.664</td>
<td>NO</td>
<td>-0.005</td>
</tr>
<tr>
<td>MaxS</td>
<td>22.952</td>
<td>8.076</td>
<td>22.97</td>
<td>11.465</td>
<td>-0.036</td>
<td>1.664</td>
<td>NO</td>
<td>-0.018</td>
</tr>
<tr>
<td>DR</td>
<td>-0.57</td>
<td>2.399</td>
<td>-1.203</td>
<td>5.582</td>
<td>1.816</td>
<td>1.664</td>
<td>YES</td>
<td>0.633</td>
</tr>
<tr>
<td>MaxD</td>
<td>-2.907</td>
<td>10.679</td>
<td>-2.838</td>
<td>10.67</td>
<td>-0.13</td>
<td>1.664</td>
<td>NO</td>
<td>-0.069</td>
</tr>
<tr>
<td>MaxDeltaV</td>
<td>6.791</td>
<td>10.316</td>
<td>5.113</td>
<td>7.253</td>
<td>3.434</td>
<td>1.664</td>
<td>YES</td>
<td>1.678</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conflict Types</th>
<th>Mean (700ft)</th>
<th>Variance (700ft)</th>
<th>Mean (1500ft)</th>
<th>Variance (1500ft)</th>
<th>t value</th>
<th>t critical</th>
<th>Significant</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.86</td>
<td>NO</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rear-end</td>
<td>5.4</td>
<td>6.3</td>
<td>7.2</td>
<td>21.7</td>
<td>-0.761</td>
<td>NO</td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>Lane changing</td>
<td>2.8</td>
<td>0.7</td>
<td>1</td>
<td>0.5</td>
<td>3.674</td>
<td>YES</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.2</td>
<td>7.2</td>
<td>8.2</td>
<td>22.7</td>
<td>1.86</td>
<td>NO</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- **More severe collisions under 700ft**
- **Increased possible lane changing collisions for 700ft when comparing 1500ft**

a. Increased possible lane-changing collisions under 700ft than in 1500ft;
b. More severe conflicts under 700ft than in 1500ft.
The overall merging successful probability decreases with growing volume level.

A numerical example is shown on the right-hand side:

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{m}</td>
<td>11 seconds</td>
</tr>
<tr>
<td>t_{m}/t_{sa}</td>
<td>2 seconds</td>
</tr>
<tr>
<td>\bar{t}</td>
<td>5.6 seconds</td>
</tr>
<tr>
<td>$\bar{\lambda}$</td>
<td>0.28</td>
</tr>
<tr>
<td>$\bar{\mu}$</td>
<td>0.67</td>
</tr>
<tr>
<td>a_1</td>
<td>4.0~4.5 ft/s²</td>
</tr>
<tr>
<td>a_2</td>
<td>11.2 ft/s²</td>
</tr>
<tr>
<td>v_1</td>
<td>63~67 mph</td>
</tr>
</tbody>
</table>

The Relationship between Traffic Demand and the Probability of Conducting Twice Lane-Changes
INTERVAL-BASED BAY LENGTH EVALUATION MODELS FOR A SIGNALIZED SUPERSTREET
Operation Analysis

Field Survey and VISSIM Calibration

- This study has conducted a field survey at a signalized Superstreet Intersection (MD3 & Waugh Chapel Rd) to calibrate key parameters in VISSIM;
- The collected data include queue lengths, signal plan and traffic flow rates.
- Extensive simulation results reveal that the exponentially increased delay when Q/L ratio approaches to 1.

Possible blockages among a Superstreet are shown below:

(A) Left-turn lane group partially blocks the right-through lane group
(B) Right-through lane group completely blocks the left-turn lane group
(C) Through lane group completely blocks the upstream lane groups

Figure. Scatter plot of average delay v.s. average QL ratio

Interval-Based Bay Length Evaluation Models for a Signalized Superstreet
Critical Issues

Interval-based queue estimation models

- Traffic flow and signal design can both contribute to the formation of queues in a superstreet
 - *Incoming traffic fluctuates over time*
 - *Signal coordination plan is another key factor to determine queue length*
 - *Develop interval-based queue estimation models to take into account of the both uncertainties.*

- **Two types of queues:**
 1. **External Queues:** only influenced by flow fluctuation
 2. **Internal Queues:** influenced by both flow fluctuation and signal coordination
Queue lengths under different signal coordination plan

- For main intersection through-Q: Q5, departures from Q6 and Q9 are two sources for its incoming flow.
- 1) through and right-turn movements from Q9;
- 2) departures from Q6

Worst Case = Largest arrival rate + worst signal coordination

Best Case = Smallest arrival rate + Best signal coordination
Spatial distributions of all potential queues among a Signalized Superstreet

- Type-1 (Q7, Q8, Q9, Q10): Through queues at major & minor road
- Type-2 (Q3, Q6): U-turn queues at the crossover intersection
- Type-3 (Q1, Q4): Left-turn queues at main intersection
- Type-4 (Q2, Q5): Through queues at main intersection
Interval-based Queue Model

- **Q5**: Through queues at the main intersection

 - Departures from Q6
 - Through and Right-turn departures from Q9

Arrivals at Q5:

For Q6, all the departures from it should merge into Q5, so at any time point k, the departures from Q6 to Q5 can be expressed as:

$$D^k = \begin{cases}
0 & \text{During Red Time} \\
\min(\beta_{9TR}, A^k_{9TR} + q^k_{9TR}) & \text{During Green Time}
\end{cases}$$

where:
- s_9 is the saturation flow rate for link 9;
- β_{9TR} is the through and right-turning ratio for Q9;
- A^k_{9TR} is the arrived vehicle for through and right-turning movements in Q9 at time k;
- q^k_{9TR} is the queued through and right-turning vehicles in Q9 at time k.

$$A^k_5 = \alpha D^k_{9TR} + (1 - \alpha) D^{k-\tau}_6, \alpha = 0, 1$$

where:
- τ is the travel time from Q6 to Q5;
- α is a binary variable.
When Q5’s red and Q9’s green is concurrent, we could find the queue time \(t^* \) can be derived using:

\[
\bar{Q}_5 = \alpha \left[\int_{t_0}^{t_0 + R_5} D_{t^{*-\sigma}} dt + \int_{t_1}^{t_1 + t^*} A_s \right. dt + \left. D_{t^{*-\sigma}} dt, \text{if} \ R^5 + t^* \leq g^9 > R^5 \right]
\]

where \(t_0 \) is the initial time of green phase of Q5 and \(t_0 \) is time to dissipate initial queue \(s \) is the saturation flow rate.

By taking into consideration of incoming traffic fluctuation, we can have the maximum queue interval as:

\[
\begin{align*}
Q_{5}^{\text{max}} &= \bar{Q}(A_{5}^{\text{max}}) \\
Q_{5}^{\text{min}} &= \bar{Q}(A_{5}^{\text{min}})
\end{align*}
\]
Model Validation

- Field Collected peak hour traffic data are used for the case study
 - Most of the simulated maximum queues fall within the estimated intervals.

![Diagram of the intersection with Q9 highlighted]

Type 1: External Q

The distribution of simulated maximal queue length (ft)

- Simulation results
- Queue lower bound
- Queue upper bound
- Measured link length

MD 3 @ Waugh Chapel Rd
Model Validation

- Field Collected peak hour traffic data are used for the case study
- Most of the simulated maximum queues fall within the estimated intervals.

- Type-4(Q2): Main through queue

The distribution of simulated maximal queue length (ft)
Model Validation

- Field Collected peak hour traffic data are used for the case study
 - Most of the simulated maximum queues fall within the estimated intervals.

- Type-2(Q3): U-turn queue

![Diagram of MD 3 @ Waugh Chapel Rd]

The distribution of simulated maximal queue length (ft)

- Simulation results
- Queue lower bound
- Queue upper bound
- Measured link length

The distribution of simulated maximal queue length (ft)
Model Validation

- Field Collected peak hour traffic data are used for the case study
 - Most of the simulated maximum queues fall within the estimated intervals.

- Type-3(Q1): Main left-turn queue

![Diagram of MD 3 @ Waugh Chapel Rd]

The distribution of simulated maximal queue length (ft)
05

TWO-STAGE SIGNAL OPTIMIZATION MODEL FOR A SIGNALIZED SUPERSTREET
Index for Movements

<table>
<thead>
<tr>
<th>Index</th>
<th>Movements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WB through at sub 1</td>
</tr>
<tr>
<td>2</td>
<td>Right-turn at sub 1</td>
</tr>
<tr>
<td>3</td>
<td>Left-turn at sub 1</td>
</tr>
<tr>
<td>4</td>
<td>U-turn at sub 2</td>
</tr>
<tr>
<td>5</td>
<td>EB through at sub 2</td>
</tr>
<tr>
<td>6</td>
<td>EB through at sub 3</td>
</tr>
<tr>
<td>7</td>
<td>Right-turn at sub 3</td>
</tr>
<tr>
<td>8</td>
<td>Left-turn at sub 3</td>
</tr>
<tr>
<td>9</td>
<td>U-turn at sub 4</td>
</tr>
<tr>
<td>10</td>
<td>WB through at sub 4</td>
</tr>
</tbody>
</table>

: index for sub-intersections. 1 stands for northern sub; 2 for western sub; 3 for southern sub and 4 stands for eastern sub.

Phase plan:
General Algorithm

Two-stage MILP

Terminate Condition:
After the change in CL is less than 1s?

Stage 1: Optimize green splits with queue constraints

- **Initialization**
 - Objective: Maximize Total throughput
 - Output: Common cycle length and green splits

- **Additional set of queue constraints**
 - External queue constraints
 - Internal queue constraints

- **Initial solution generation for Stage 2**

Stage 2: Determination of offset for each sub-intersection

- Objective: Maximize weighted bandwidth and Minimize weighted minor road waiting time
- Output: offset for each sub-intersection

- **Offset generation for Stage 1**

Optimal Signal Timing Solution
Stage 1 - Initial (Wong, 2003)

- **Control Objective:** Capacity Maximization

Objective Function: \(\text{Max}(\sum_{i \in I} \mu_i) \)

- **Subject to:**
 - Traffic rate will not exceed the saturation flow rate: \(\mu_i \alpha_{ij} q_{ij} \leq s(\phi_{ij} - \xi \times t_i) \)
 - Cycle length constraints: \(\frac{1}{C_{\text{max}}} \leq \xi \leq \frac{1}{C_{\text{min}}} \)
 - Green ratio constraints: \(g_{\text{min}} \times \xi \leq \phi_{ij} \leq g_{\text{max}} \times \xi \)
 - Sum of green time cannot exceed cycle length: \(\phi_{ij_1} + \phi_{ij_2} = 1; j_1, j_2 \in J \) and \(j_1 \neq j_2 \)

Initial solution for stage 2: *Cycle length and Green splits*

General Algorithm

Terminate Condition:
After the change in CL is less than 1s

Initial Inputs
- Demand Pattern
- Signal Phasing Plan

Stage 1: Optimize green splits with queue constraints

Initialization
- Objective: Maximize Total throughput
- Output: Common cycle length and green splits

Additional set of queue constraints
- External queue constraints
- Internal queue constraints

Green split solution for Stage 2 (not initial)

Stage 2: Determination of offset for each sub-intersection

- Objective: Maximize weighted bandwidth and Minimize weighted minor road waiting time
- Output: offset for each sub-intersection

Offset generation for Stage 1

Optimal Signal Timing Solution
Critical Paths

- **Path 1, 4:** Through and left-turn movements from the minor road, including 3 signals which are 1-2-3 or 3-4-1;
- **Path 2, 5:** Through and right-turn movements on arterial, including 2 signals which are 2-3 or 4-1;
- **Path 3, 6:** Left-turn movements on arterial, including 2 signals which are 2-1 or 4-3.

Stage-2 Control Objective:

Green Band Maximization & Minor Road Waiting Time Ratio Minimization

Objective Function: \(\text{Max}(\sum_{p \in P} \eta_p b_p - f_k \sum_{i \in K} D_{ik}) \)
Stage 2

- Minor Road Waiting time constraints:

\[D_{11} \]

\[D_{21} \geq 0 \]

\[D_{21} \]

\[x_{11} = 0 \]

\[x_{11} = 1 \]

\[x_{11} \geq \frac{\theta_2 + \phi_5 - \theta_1 - \phi_1 - t_{12}}{M} \]

\[x_{11} \leq \frac{\theta_2 + \phi_5 - \theta_1 - \phi_1 - t_{12} + 1}{M} \]

\[x_{11} = 0, 1 \text{ are binary variables} \]
Stage 2

- Minor Road Waiting time constraints:

$x_{21} \geq \frac{\theta_2 + \phi_3 + t_{23} - \theta_3 - \phi_6}{M} \quad \Rightarrow \quad D_{11} \geq \phi_1$

$x_{21} \leq \frac{\theta_2 + \phi_3 + t_{23} - \theta_3 - \phi_6 + 1}{M} \quad \Rightarrow \quad D_{31} \geq (1 - \theta_2 - \phi_3 - t_{23} + \theta_3) - (1 - x_{11})M - (1 - x_{21})M$

$x_{31} \geq \frac{\theta_1 + \phi_1 + t_{12} + t_{23} - \theta_3 - \phi_6}{M} \quad \Rightarrow \quad D_{31} \geq (1 - \theta_1 - \phi_1 - t_{12} - t_{23} + \theta_3) - x_{11}M - (1 - x_{21})M$

$x_{31} \leq \frac{\theta_1 + \phi_1 + t_{12} + t_{23} - \theta_3 - \phi_6 + 1}{M} \quad \Rightarrow \quad D_{11}, D_{31} \geq 0$

$x_{21}, x_{31} = 0, 1$ are binary variables

$D_{11} + D_{21} + D_{31} \leq \lambda \xi^* (t_{12} + t_{23})$
Two-stage Signal Optimization Model for a Signalized Superstreet

General Algorithm

Terminate Condition:
After the change in CL is less than 1s

Initial Inputs
- Demand Pattern
- Signal Phasing Plan

Stage 1: Optimize green splits with queue constraints

Initialization
- Objective: Maximize Total throughput
- Output: Common cycle length and green splits

Additional set of queue constraints
- External queue constraints
- Internal queue constraints

Stage 2: Determination of offset for each sub-intersection

- Objective: Maximize weighted bandwidth and Minimize weighted minor road waiting time
- Output: offset for each sub-intersection

Offset generation for Stage 1

Optimal Signal Timing Solution

Initial solution generation for Stage 2

Termination Condition Satisfied?

No

YES
Spatial Distribution of Potential Queues

- External Queues: Q2, Q5, Q7, Q10;
- Internal Queues: Q1, Q6, Q3, Q8, Q4, Q9.

Motivation for adding queue constraints: Cycle Length is the key contributing factor to the queue formations!
Stage 1 - Queue Constraints

- While keeping the previous *Objective function* & *All Constraints* in *Initial*;

- Maximum Queue won’t exceed the link length:
 --For *External Queues*:

 - For Q7:

 \[L_7 \leq \frac{(1-\phi_{37} + t_l \cdot \xi) \cdot \alpha_7 q_7 \cdot s}{(s - \alpha_7 q_7) \cdot \xi} \]

 \[(1-\phi_{37} + t_l \cdot \xi) \cdot \alpha_7 q_7 \cdot s \leq L_7 (s - \alpha_7 q_7) \cdot \xi\]
Stage 1 - Queue Constraints

- Internal Queues:
 - For U-turn Queue (Q4):
 - Define binary variables:
 \[Q'_4 \leq \left(\frac{\theta_2 + \phi_{25} - t_{12} - \theta_1 - \phi_{11}}{M} \right) \alpha_{24} q_{LT}^2 - (1 - y_4)M \]
 \[Q'_4 \geq \theta_4 \leq \frac{\theta_2 + \phi_{25} - t_{12} - \theta_1 - \phi_{11}}{M} + 1 \]
 - \(f_1 \), binary parameter, = 1 if \(\theta_1 > \theta_2 - t_{12} \), o.w. = 0

Q4 cannot exceed link length 4:
Case Study

- Input demand:

<table>
<thead>
<tr>
<th>Input Demand</th>
<th>Unit: Veh/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>494</td>
<td>2363</td>
</tr>
<tr>
<td>516</td>
<td>491</td>
</tr>
<tr>
<td>2340</td>
<td>259</td>
</tr>
<tr>
<td>54</td>
<td>312</td>
</tr>
<tr>
<td>504</td>
<td>244</td>
</tr>
<tr>
<td>28</td>
<td>304</td>
</tr>
<tr>
<td>491</td>
<td>2363</td>
</tr>
<tr>
<td>259</td>
<td>516</td>
</tr>
<tr>
<td>312</td>
<td>504</td>
</tr>
<tr>
<td>54</td>
<td>2340</td>
</tr>
</tbody>
</table>

Using the MD 3@ Waugh Chapel Rd field collected traffic data, the model has ran 4 times to get the optimized signal plan.

The maximum waiting time for minor Rd drivers are not exceeding the upper bound.
Case Study

- Cycle length = 67s
- Green Splits

\[b_1 = 0; b_4 = 0 \]

No band for Path 1 & 4.
Case Study

- **Comparison Solution (Synchro)**
 - Cycle Length: 120s
 - Green Splits:

 - **SUB 1**
 - Offset = 51s
 - Offset = 113s
 - Offset = 0s
 - Offset = 42s

 - **SUB 2**
 - Offset = 28s
 - Offset = 0s
 - Offset = 28s

 - **SUB 3**
 - Offset = 17s
 - Offset = 0s
 - Offset = 40s

 - **SUB 4**
 - Offset = 42s
 - Offset = 43s

Two-stage Signal Optimization Model for a Signalized Superstreet
Case Study

- **Simulation Results Comparison** *(30 cases, 2hr duration per case)*
 - Maximum Queue Length Comparison for Q1—(Main Through Q)

![Graph showing maximum queue length comparison](image.png)
Case Study

- Simulation Result Comparisons (30 cases, 2hr duration per case)
 - Maximum Queue Length Comparison for Q3--(Main left-turn Q)
Case Study

- **Simulation Result Comparisons** (30 cases, 2hr duration per case)
 - Maximum Queue Length Comparison for **Q9**—(U-turn Q)

![Graph showing maximum queue length comparison for Q9](image)

Two-stage Signal Optimization Model for a Signalized Superstreet
Case Study

- Simulation Result Comparisons (30 cases, 2hr duration per case)
 - Maximum Queue Length Comparison for External Queues

Two-stage Signal Optimization Model for a Signalized Superstreet
Case Study

- Simulation Result Comparisons
 - Average Intersection Delay Comparison

![Average Intersection Delay](image)

Two-stage Signal Optimization Model for a Signalized Superstreet
CONCLUSIONS
Contributions

A. Proposed the procedures and formulations to compute the *minimum required U-turn offset length* for an un-signalized Superstreet;

B. Developed the *interval-based models* for evaluating the *bay length* design in a signalized Superstreet under the given demand variation;

C. Presented an efficient *two-stage signal optimization* model to prevent queue spillback on intersection links and to *minimize the delays* experienced by minor road drivers.

This research offers reliable tools to assist traffic professionals in the design of Superstreets with and without signal control.
Future Work

- Field calibration and evaluation on the minimum U-turn offset length model for an Un-signalized Superstreet.

- Evaluation of the impacts of a Superstreet on its neighboring intersections.

- Coordination of a signal plan for a signalized Superstreet with its neighboring intersections on the same corridor.
THANKS FOR YOUR TIME

HAPPY TEACHER'S DAY